Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781259822674
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 17.7, Problem 153FEP
Consider gas flow through a converging–diverging nozzle. Of the five following statements, select the one that is incorrect:
- (a) The fluid velocity at the throat can never exceed the speed of sound.
- (b) If the fluid velocity at the throat is below the speed of sound, the diverging section will act like a diffuser.
- (c) If the fluid enters the diverging section with a Mach number greater than one, the flow at the nozzle exit will be supersonic.
- (d) There will be no flow through the nozzle if the back pressure equals the stagnation pressure.
- (e) The fluid velocity decreases, the entropy increases, and stagnation enthalpy remains constant during flow through a normal shock.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider gas flow through a converging–diverging nozzle. Of the five following statements, select the one that is incorrect: (a) The fluid velocity at the throat can never exceed the speed of sound. (b) If the fluid velocity at the throat is below the speed of sound, the diversion section will act like a diffuser. (c) If the fluid enters the diverging section with a Mach number greater than one, the flow at the nozzle exit will be supersonic. (d ) There will be no flow through the nozzle if the back pressure equals the stagnation pressure. (e) The fluid velocity decreases, the entropy increases, and stagnation enthalpy remains constant during flow through a normal shock.
Fluid moves through a nozzle with Mach number of 1.5. Determine the following:
(i) Speed of the fluid if the speed of sound in air is 325 m/s;
(ii) Mach number if the speed of the fluid is 125 m/s.
Please find out the following from the given question.
1. Inlet Mach Number
2. Total pressure in MPa
3. Total Temperature in K
4. Outlet Mach Number
5. Exit Velocity in m/s
6. Area Ratio, A2/A1
Chapter 17 Solutions
Thermodynamics: An Engineering Approach
Ch. 17.7 - A high-speed aircraft is cruising in still air....Ch. 17.7 - What is dynamic temperature?Ch. 17.7 - Prob. 3PCh. 17.7 - Prob. 4PCh. 17.7 - Prob. 5PCh. 17.7 - Prob. 6PCh. 17.7 - Calculate the stagnation temperature and pressure...Ch. 17.7 - Prob. 8PCh. 17.7 - Prob. 9PCh. 17.7 - Prob. 10P
Ch. 17.7 - Prob. 11PCh. 17.7 - Prob. 12PCh. 17.7 - Prob. 13PCh. 17.7 - Prob. 14PCh. 17.7 - Prob. 15PCh. 17.7 - Prob. 16PCh. 17.7 - Prob. 17PCh. 17.7 - Prob. 18PCh. 17.7 - Prob. 19PCh. 17.7 - Prob. 20PCh. 17.7 - Prob. 21PCh. 17.7 - Prob. 22PCh. 17.7 - Prob. 23PCh. 17.7 - Prob. 24PCh. 17.7 - Prob. 25PCh. 17.7 - Prob. 26PCh. 17.7 - The isentropic process for an ideal gas is...Ch. 17.7 - Is it possible to accelerate a gas to a supersonic...Ch. 17.7 - Prob. 29PCh. 17.7 - Prob. 30PCh. 17.7 - A gas initially at a supersonic velocity enters an...Ch. 17.7 - Prob. 32PCh. 17.7 - Prob. 33PCh. 17.7 - Prob. 34PCh. 17.7 - Prob. 35PCh. 17.7 - Prob. 36PCh. 17.7 - Prob. 37PCh. 17.7 - Air at 25 psia, 320F, and Mach number Ma = 0.7...Ch. 17.7 - Prob. 39PCh. 17.7 - Prob. 40PCh. 17.7 - Prob. 41PCh. 17.7 - Prob. 42PCh. 17.7 - Prob. 43PCh. 17.7 - Is it possible to accelerate a fluid to supersonic...Ch. 17.7 - Prob. 45PCh. 17.7 - Prob. 46PCh. 17.7 - Prob. 47PCh. 17.7 - Consider subsonic flow in a converging nozzle with...Ch. 17.7 - Consider a converging nozzle and a...Ch. 17.7 - Prob. 50PCh. 17.7 - Prob. 51PCh. 17.7 - Prob. 52PCh. 17.7 - Prob. 53PCh. 17.7 - Prob. 54PCh. 17.7 - Prob. 57PCh. 17.7 - Prob. 58PCh. 17.7 - Prob. 59PCh. 17.7 - Prob. 60PCh. 17.7 - Prob. 61PCh. 17.7 - Air enters a nozzle at 0.5 MPa, 420 K, and a...Ch. 17.7 - Prob. 63PCh. 17.7 - Are the isentropic relations of ideal gases...Ch. 17.7 - What do the states on the Fanno line and the...Ch. 17.7 - It is claimed that an oblique shock can be...Ch. 17.7 - Prob. 69PCh. 17.7 - Prob. 70PCh. 17.7 - For an oblique shock to occur, does the upstream...Ch. 17.7 - Prob. 72PCh. 17.7 - Prob. 73PCh. 17.7 - Prob. 74PCh. 17.7 - Prob. 75PCh. 17.7 - Prob. 76PCh. 17.7 - Prob. 77PCh. 17.7 - Prob. 78PCh. 17.7 - Prob. 79PCh. 17.7 - Air flowing steadily in a nozzle experiences a...Ch. 17.7 - Air enters a convergingdiverging nozzle of a...Ch. 17.7 - Prob. 84PCh. 17.7 - Prob. 85PCh. 17.7 - Consider the supersonic flow of air at upstream...Ch. 17.7 - Prob. 87PCh. 17.7 - Prob. 88PCh. 17.7 - Air flowing at 40 kPa, 210 K, and a Mach number of...Ch. 17.7 - Prob. 90PCh. 17.7 - Prob. 91PCh. 17.7 - Prob. 92PCh. 17.7 - What is the characteristic aspect of Rayleigh...Ch. 17.7 - Prob. 94PCh. 17.7 - Prob. 95PCh. 17.7 - What is the effect of heat gain and heat loss on...Ch. 17.7 - Consider subsonic Rayleigh flow of air with a Mach...Ch. 17.7 - Prob. 98PCh. 17.7 - Prob. 99PCh. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 101PCh. 17.7 - Prob. 102PCh. 17.7 - Prob. 103PCh. 17.7 - Air enters a rectangular duct at T1 = 300 K, P1 =...Ch. 17.7 - Prob. 106PCh. 17.7 - Prob. 107PCh. 17.7 - Air is heated as it flows through a 6 in 6 in...Ch. 17.7 - What is supersaturation? Under what conditions...Ch. 17.7 - Steam enters a converging nozzle at 5.0 MPa and...Ch. 17.7 - Steam enters a convergingdiverging nozzle at 1 MPa...Ch. 17.7 - Prob. 112PCh. 17.7 - Prob. 113RPCh. 17.7 - Prob. 114RPCh. 17.7 - Prob. 115RPCh. 17.7 - Prob. 116RPCh. 17.7 - Prob. 118RPCh. 17.7 - Prob. 119RPCh. 17.7 - Using Eqs. 174, 1713, and 1714, verify that for...Ch. 17.7 - Prob. 121RPCh. 17.7 - Prob. 122RPCh. 17.7 - Prob. 123RPCh. 17.7 - Prob. 124RPCh. 17.7 - Prob. 125RPCh. 17.7 - Prob. 126RPCh. 17.7 - Nitrogen enters a convergingdiverging nozzle at...Ch. 17.7 - An aircraft flies with a Mach number Ma1 = 0.9 at...Ch. 17.7 - Prob. 129RPCh. 17.7 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 17.7 - Helium expands in a nozzle from 0.8 MPa, 500 K,...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 134RPCh. 17.7 - Prob. 135RPCh. 17.7 - Air is cooled as it flows through a 30-cm-diameter...Ch. 17.7 - Saturated steam enters a convergingdiverging...Ch. 17.7 - Prob. 138RPCh. 17.7 - Prob. 145FEPCh. 17.7 - Prob. 146FEPCh. 17.7 - Prob. 147FEPCh. 17.7 - Prob. 148FEPCh. 17.7 - Prob. 149FEPCh. 17.7 - Prob. 150FEPCh. 17.7 - Prob. 151FEPCh. 17.7 - Prob. 152FEPCh. 17.7 - Consider gas flow through a convergingdiverging...Ch. 17.7 - Combustion gases with k = 1.33 enter a converging...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- QUESTION 14 The fan of a turbofan engine is tested at high speed. The flow approaches the fan tip at a relative Mach number M1rel = 1.19. An oblique shock forms at the fan tip leading edge, with a shock angle B = 87 degrees. Use cold-air- standard assumptions and the two-dimensional oblique shock formulae to determine the relative Mach number M2rel after the shock. State your answer to two decimal places. Partial credit is awarded for a reasonable approximation to the correct numerical answer. %3Darrow_forwardPart A Outside air at a temperature of 25°C is drawn into the duct and then heated along the duct at 210 kJ/kg. At section 1 the temperature is T = 15°C and the absolute pressure is 98 kPa. Neglect friction. (Figure 1) Determine the Mach number at section 2. Express your answer using three significant figures. vec ? M2 = Submit Previous Answers Request Answer X Incorrect; Try Again; 4 attempts remaining Part B Complete previous part(s) Part C Complete previous part(s) Figure Provide Feedback 50 mm -2 m-arrow_forwardQ8-The mach number at the exit of a combustion chamber is 0.9. the ratio of stagnation temperatures at exit and entry is 3.74. If the pressure and temperature of the gas at exit are 2.5 bar and 1273 K respectively, determine (a) mach number, pressure, and temperature of the gas at entry, (b) heat supplied per kg of the (c) maximum heat that can be supplied. gas andarrow_forward
- Question Two Consider one-dimensional air isentropic flow through a duct. At a certain section of this duct, the velocity is 360 m/s, the temperature is 45 °C, and the pressure is 120 kPa. Find the Mach number and the stagnation temperature and pressure at this point in the flow. If the temperature at some other point in the flow is 90 °C, find the Mach number and pressure at this point in the flow.arrow_forwardQuestion B3 Consider an ideal nozzle of a rocket flying at an altitude where the ambient pressure and temperature are 26.5 kPa and 223 K, respectively. The nozzle is designed to expand air from its combustion chamber in which the pressure and temperature are Po kPa and 1400 K respectively to a Mach number of 2.00. The exit area of this nozzle is to be 0.196 m². You may assume the chamber temperature remains constant. 1- Calculate the nozzle supply pressure and throat area, mass flow rate through the nozzle and its thrust when operating at its design condition; DEN5242 (May 2019) Question B3 continued 2- Calculate the mass flow rate through the nozzle for a pressure ratio Po Ph of = 1.005. 3- Calculate the mass flow rate through the nozzle at a chamber pressure of 50 kPa; 4- Determine the chamber pressure at which a normal shock wave stands at the exit plane of the nozzle.arrow_forwardQUESTION 3 Dry air at 270C flows with a velocity of 360 kmph in an adiabatic wind tunnel. The static pressure is measured as 110kPa. Determine the Mach number, Stagnation temperature stagnation pressure and the stagnation density of air at the stagnation point on the nose tip of an aircraft model installed in the tunnel. Assume the cross-section area of the tunnel is 1.0 sq.m, Determine the mass flow rate of the air. For air take R = 287 J/kg; γ = 1.4;arrow_forward
- 1. Using the Second and Third-Order Approximations, find the pressure acting on the upper and lower surfaces of a flat plate inclined at an angle of 10° toward the airflow at initial Mach number of 2 and freestream pressure of 1 atm.arrow_forwardAir at 30 lbf/in2 absolute and 200F flows from a reservoir into a duct. The flow is steady, adiabatic, frictionless. The flow rate is 10lbm/s. What are the cross-sectional area, temperature, pressure, and Mach number at the point in the duct where the velocity is 1,400 ft/s?arrow_forwardFast please.arrow_forward
- Question Four A converging nozzle is fed with air from a large reservoir where the temperature and the pressure are 308 K and 182 kPa, respectively. The nozzle discharges into a region where the pressure is 120 kPa and the flow is isentropic throughout the nozzle. At a certain section within the nozzle, where the cross-sectional area is 0.0032 m2, the velocity is 150 m/s. Determine the pressure, Mach number and cross-sectional area at the exit.arrow_forwardOutside air at a temperature of 25°C is drawn into the duct and then heated along the duct at 234 kJ/kg. At section 1 the temperature is T = 15°C and the absolute pressure is 98 kPa. Neglect friction. (Figure 1) Figure ▬ 50 mm -2 m 1 of 1 Part A Determine the Mach number at section 2. Express your answer using three significant figures. M₂ = Submit 15| ΑΣΦ | Η Provide Feedback Request Answer Part B Complete previous part(s) Part C Complete previous part(s) vec www ? Next >arrow_forwardWhat is the Mach number of an airflow with a velocity of 2000m/s, at 2,000 ft altitude?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License