Party hearing. As the number of people at a party increases, you must raise your voice for a listener to hear you against the background noise of the other partygoers. However, once you reach the level of yelling, the only way you can he heard is if you move closer to your listener, into the listener’s “personal space.” Model the situation by replacing you with an isotropic point source of fixed power P and replacing your listener with a point that absorbs part of your sound waves. These points arc initially separated by r i = 1.20 m. If the background noise increases by Δ β = 5 dB, the sound level at your listener must also increase. What separation r f i s then required?
Party hearing. As the number of people at a party increases, you must raise your voice for a listener to hear you against the background noise of the other partygoers. However, once you reach the level of yelling, the only way you can he heard is if you move closer to your listener, into the listener’s “personal space.” Model the situation by replacing you with an isotropic point source of fixed power P and replacing your listener with a point that absorbs part of your sound waves. These points arc initially separated by r i = 1.20 m. If the background noise increases by Δ β = 5 dB, the sound level at your listener must also increase. What separation r f i s then required?
Party hearing. As the number of people at a party increases, you must raise your voice for a listener to hear you against the background noise of the other partygoers. However, once you reach the level of yelling, the only way you can he heard is if you move closer to your listener, into the listener’s “personal space.” Model the situation by replacing you with an isotropic point source of fixed power P and replacing your listener with a point that absorbs part of your sound waves. These points arc initially separated by ri = 1.20 m. If the background noise increases by Δβ = 5 dB, the sound level at your listener must also increase. What separation rf is then required?
3.63 • Leaping the River II. A physics professor did daredevil
stunts in his spare time. His last stunt was an attempt to jump across
a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at
53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower
than the top of the ramp. The river itself was 100 m below the ramp.
Ignore air resistance. (a) What should his speed have been at the top of
the ramp to have just made it to the edge of the far bank? (b) If his speed
was only half the value found in part (a), where did he land?
Figure P3.63
53.0°
100 m
40.0 m→
15.0 m
Please solve and answer the question correctly please. Thank you!!
You throw a small rock straight up from the edge of a highway bridge that crosses a river. The rock passes you on its way down, 5.00 s after it was thrown. What is the speed of the rock just before it reaches the water 25.0 m below the point where the rock left your hand? Ignore air resistance.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.