Fundamentals of Physics, Volume 1, Chapter 1-20
10th Edition
ISBN: 9781118233764
Author: David Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 90P
To determine
To Find:
a) Frequency of the sound wave for air molecules A and B
b) Frequency of the sound wave for air molecules C and D
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A sinusoidal sound wave moves at 343 m/s through air in the positive direction of an x axis. At one instant during the oscillations, air molecule A is at its maximum displacement in the negative direction of the axis while air molecule B is at its equilibrium position. The separation between those molecules is 15.0 cm, and the molecules between A and B have intermediate displacements in the negative direction of the axis. (a) What is the frequency of the sound wave? In a similar arrangement but for a different sinusoidal sound wave, at one instant air molecule C is at its maximum displacement in the positive direction while molecule D is at its maximum displacement in the negative direction.The separation between the molecules is again 15.0 cm, and the molecules between C and D have intermediate displacements. (b) What is the frequency of the sound wave?
Consider a sound wave moving through the air modeled with the equation s(x, t) = 6.00 nm cos (54.93 m−1 x − 18.84 × 103 s−1 t).What is the shortest time required for an air molecule to move between 3.00 nm and –3.00 nm?
A sound wave of the form s = Sm cos(kx - wt + p) travels at 344 m/s through air in a long
horizontal tube. At one instant, air molecule A at x = 2.03 m is at its maximum positive
displacement of 6.00 nm and air molecule B at x = 2.08 m is at a positive displacement of 2.30 nm.
All the molecules between A and B are at intermediate displacements. What is the frequency of the
17013
wave?
Number
Units
*1
Chapter 17 Solutions
Fundamentals of Physics, Volume 1, Chapter 1-20
Ch. 17 - In a first experiment, a sinusoidal sound wave is...Ch. 17 - In Fig. 17-25, two point sources S1, and S2, which...Ch. 17 - In Fig. 17-26, three long tubes A,B, and C are...Ch. 17 - Prob. 4QCh. 17 - In Fig. 17-27, pipe A is made to oscillate in its...Ch. 17 - Prob. 6QCh. 17 - Figure 17-28 shows a moving sound source S that...Ch. 17 - Prob. 8QCh. 17 - For a particular tube, here are four of the six...Ch. 17 - Prob. 10Q
Ch. 17 - You are given four tuning forks. The fork with the...Ch. 17 - Two spectators at a soccer game see, and a moment...Ch. 17 - What is the bulk modulus of oxygen if 32.0 g of...Ch. 17 - Prob. 3PCh. 17 - A column of soldiers, marching at 120 paces per...Ch. 17 - Prob. 5PCh. 17 - A man strikes one end of a thin rod with a hammer....Ch. 17 - SSM WWW A stone is dropped into a well. The splash...Ch. 17 - GO Hot chocolate effect. Tap a metal spoon inside...Ch. 17 - If the form of a sound wave traveling through air...Ch. 17 - Prob. 10PCh. 17 - SSM Diagnostic ultrasound of frequency 4.50 MHz is...Ch. 17 - The pressure in a traveling sound wave is given by...Ch. 17 - A sound wave of the form s = sm coskx t travels...Ch. 17 - Figure 17-32 shows the output from a pressure...Ch. 17 - GO A handclap on stage in an amphitheater sends...Ch. 17 - Two sound waves, from two different sources with...Ch. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - GO Figure 17-35 shows two isotropic point sources...Ch. 17 - Figure 17-36 shows four isotropic point sources of...Ch. 17 - SSM In Fig. 17-37, two speakers separated by...Ch. 17 - In Fig. 17-38, sound with a 40.0 cm wavelength...Ch. 17 - GO Figure 17-39 shows two point sources S1 and S2...Ch. 17 - Suppose that the sound level of a conversation is...Ch. 17 - A sound wave of frequency 300Hz has an intensity...Ch. 17 - Prob. 26PCh. 17 - SSM WWW A certain sound source is increased in...Ch. 17 - Two sounds differ in sound level by 1.00 dB. What...Ch. 17 - Prob. 29PCh. 17 - The source of a sound wave has a power of 1.00 W....Ch. 17 - GO When you crack a knuckle, you suddenly widen...Ch. 17 - Approximately a third of people with normal...Ch. 17 - Male Rana catesbeiana bullfrogs arc known for...Ch. 17 - GO Two atmospheric sound sources A and B emit...Ch. 17 - A point source emits 30.0 W of sound...Ch. 17 - Party hearing. As the number of people at a party...Ch. 17 - Prob. 37PCh. 17 - The water level in a vertical glass tube 1.00 m...Ch. 17 - Prob. 39PCh. 17 - Organ pipe A, with both ends open, has a...Ch. 17 - A violin siring 15.0 cm long and fixed at both...Ch. 17 - A sound wave in a fluid medium is reflected at a...Ch. 17 - SSM In Fig. 17-41, S is a small loudspeaker driven...Ch. 17 - The crest of a Parasaurolophus dinosaur skull is...Ch. 17 - In pipe A, the ratio of a particular harmonic...Ch. 17 - GO Pipe A. which is 1.20 m long and open at both...Ch. 17 - A well with vertical sides and water at the bottom...Ch. 17 - One of the harmonic frequencies of tube A with two...Ch. 17 - SSM A violin string 30.0 cm long with linear...Ch. 17 - Prob. 50PCh. 17 - The A string of a violin is a little too tightly...Ch. 17 - A tuning fork of unknown frequency makes 3.00...Ch. 17 - SSM Two identical piano wires have a fundamental...Ch. 17 - You have five tuning forks that oscillate at close...Ch. 17 - Prob. 55PCh. 17 - An ambulance with a siren emitting a whine at 1600...Ch. 17 - A state trooper chases a speeder along a straight...Ch. 17 - Prob. 58PCh. 17 - GO In Fig. 17-42, a French submarine and a U.S....Ch. 17 - A stationary motion detector sends sound waves of...Ch. 17 - GO A bat is flitting about in a cave, navigating...Ch. 17 - Figure 17-43 shows four tubes with lengths 1.0 m...Ch. 17 - ILWAn acoustic burglar alarm consists of a source...Ch. 17 - A stationary detector measures the frequency of a...Ch. 17 - GO A 2000 Hz siren and a civil defense official...Ch. 17 - GO Two trains are traveling toward each other at...Ch. 17 - SSM WWWA girl is sitting near the open window of a...Ch. 17 - Prob. 68PCh. 17 - SSMA jet plane passes over you at a height of 5000...Ch. 17 - A plane flies at 1.25 times the speed of sound....Ch. 17 - At a distance of 10 km, a 100 Hz horn, assumed to...Ch. 17 - A bullet is fired with a speed of 685 m/s. Find...Ch. 17 - Prob. 73PCh. 17 - The average density of Earths crust 10 km beneath...Ch. 17 - A certain loudspeaker system emits sound...Ch. 17 - Find the ratios greater to smaller of the a...Ch. 17 - Prob. 77PCh. 17 - A trumpet player on a moving railroad flatcar...Ch. 17 - GO In Fig. 17-46, sound of wavelength 0.850 m is...Ch. 17 - GO A detector initially moves at constant velocity...Ch. 17 - SSMa If two sound waves, one in air and one in...Ch. 17 - A continuous sinusoidal longitudinal wave is sent...Ch. 17 - SSMUltrasound, which consists of sound waves with...Ch. 17 - The speed of sound in a certain metal is vm. One...Ch. 17 - An avalanche of sand along some rare desert sand...Ch. 17 - A sound source moves along an x axis, between...Ch. 17 - SSMA siren emitting a sound of frequency 1000 Hz...Ch. 17 - Prob. 88PCh. 17 - Prob. 89PCh. 17 - Prob. 90PCh. 17 - Prob. 91PCh. 17 - You can estimate your distance from a lightning...Ch. 17 - SSMFigure 17-48 shows an air-filled, acoustic...Ch. 17 - Prob. 94PCh. 17 - SSMThe sound intensity is 0.0080 W/m2 at a...Ch. 17 - Four sound waves are to be sent through the same...Ch. 17 - Prob. 97PCh. 17 - A point source that is stationary on an x axis...Ch. 17 - You are standing at a distance D from an isotropic...Ch. 17 - Pipe A has only one open end; pipe B is four times...Ch. 17 - A pipe 0.60 m long and closed at one end is filled...Ch. 17 - A sound wave travels out uniformly in all...Ch. 17 - A police car is chasing a speeding Porsche 911....Ch. 17 - Suppose a spherical loudspeaker emits sound...Ch. 17 - In Fig. 17-35. S1 and S2 are two isotropic point...Ch. 17 - Prob. 106PCh. 17 - Kundts method for measuring the speed of sound. In...Ch. 17 - Prob. 108PCh. 17 - In Fig. 17-53, a point source S of sound waves...Ch. 17 - A person on a railroad car blows a trumpet note at...Ch. 17 - A listener at rest with respect to the air and the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The equation of a harmonic wave propagating along a stretched string is represented by y(x, t) = 4.0 sin (1.5x 45t), where x and y are in meters and the time t is in seconds. a. In what direction is the wave propagating? be. N What are the b. amplitude, c. wavelength, d. frequency, and e. propagation speed of the wave?arrow_forwardA flute has a length of 58.0 cm. If the speed of sound in air is 343 m/s, what is the fundamental frequency of the flute, assuming it is a tube closed at one end and open at the other? (a) 148 Hz (b) 296 Hz (c) 444 Hz (d) 591 Hz (e) none of those answersarrow_forwardAt t = 0, a transverse pulse in a wire is described by the function y=6.00x2+3.00 where xand y are in meters. If the pulse is traveling in the positive x direction with a speed of 4.50 m/s, write the function y(x, t) that describes this pulse.arrow_forward
- A pipe is observed to have a fundamental frequency of 345 Hz. Assume the pipe is filled with air (v = 343 m/s). What is the length of the pipe if the pipe is a. closed at one end and b. open at both ends?arrow_forwardA plane harmonic sound wave of amplitude 15 mPa propagates in air (ρ= 1.2 kg/m3) at 21 °C, with a frequency of 549 Hz. If the sound intensity is increased by a factor of 49, the intensity level changes by a factor ofarrow_forwardA sound wave of the form s = Sm cos(kx - wt + P) travels at 344 m/s through air in a long horizontal tube. At one instant, air molecule A at x = 2.03 m Ís at its maximum positive displacement of 6.00 nm and air molecule B at x = 2.08 m is at a positive displacement of 2.30 nm. All the molecules between A and B are at intermediate displacements. What is the frequency of the wave? 7013 NumberT76933.8 •1 Units THZarrow_forward
- A sound wave of frequency 187 Hz has an intensity of 4.57 μW/m2. What is the amplitude of the air oscillations caused by this wave? (Take the speed of sound to be 343 m/s, and the density of air to be 1.21 kg/m3.)arrow_forwardA 49.4-Hz sound wave is barely audible at a sound intensity level of 60.0 dB. The density of air at 20.0°C is 1.20 kg/m3. Speed of sound in air at 20.0°C is 343 m/s. What is the displacement amplitude of a 49.4-Hz sound wave? Answer in ____ n/m.arrow_forwardA sound wave of the form s = Sm cos(kx - wt + p) travels at 346 m/s through air in a long horizontal tube. At one instant, air molecule A at x = 2.04 m is at its maximum positive displacement of 6.10 nm and air molecule B at x = 2.08 m is at a positive displacement of 2.30 nm. All the molecules between A and B are at intermediate displacements. What is the frequency of the wave?arrow_forward
- The longitudinal displacement of a mass element in a medium as a sound wave passes through it is given by s = sm cos (kx – ωt). Consider a sound wave of frequency 440 Hz and wavelength 0.75m. If sm = 12 μm, what is the displacement of an element of air located at x = 1.2 m at time t = 0.11 s?arrow_forwardA pulse can be described as a single wave disturbance that moves through a medium. Consider a pulse that is defined at time t = 0.00 s by the equation y(x) = 6.00 m3/(x2 + 2.00 m2) centered around x = 0.00 m. The pulse moves with a velocity of v = 3.00 m/s in the positive x-direction. (a) What is the amplitude of the pulse? (b) What is the equation of the pulse as a function of position and time? (c) Where is the pulse centered at time t = 5.00 s ?arrow_forwardA sound wave in air has pressure amplitude equal to 4×10^-3 n/m^2. Calculate the displacement amplitude of the wave at frequency 10 KHarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning