Fundamentals of Physics, Volume 1, Chapter 1-20
10th Edition
ISBN: 9781118233764
Author: David Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 86P
A sound source moves along an x axis, between detectors A and B. The wavelength of the sound detected at A is 0.500 that of the sound detected at B. What is the ratio vs/v of the speed of the source to the speed of sound?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A sound source moves along an x axis, between detectors A and B. The wavelength of the sound detected at A is 0.500 that of the sound detected at B.What is the ratio s/ of the speed of the source to the speed of sound?
What is the speed of sound in substance X if a note produced at 440Hz has a wavelength of 14.8 m?
The speed of sound in air is measured at 335 m/s. The frequency of the sound at the source is 375Hz. The speed of the source is 60.7 m/s.What is the frequency emitted by the source as it is moving TOWARD you?
Chapter 17 Solutions
Fundamentals of Physics, Volume 1, Chapter 1-20
Ch. 17 - In a first experiment, a sinusoidal sound wave is...Ch. 17 - In Fig. 17-25, two point sources S1, and S2, which...Ch. 17 - In Fig. 17-26, three long tubes A,B, and C are...Ch. 17 - Prob. 4QCh. 17 - In Fig. 17-27, pipe A is made to oscillate in its...Ch. 17 - Prob. 6QCh. 17 - Figure 17-28 shows a moving sound source S that...Ch. 17 - Prob. 8QCh. 17 - For a particular tube, here are four of the six...Ch. 17 - Prob. 10Q
Ch. 17 - You are given four tuning forks. The fork with the...Ch. 17 - Two spectators at a soccer game see, and a moment...Ch. 17 - What is the bulk modulus of oxygen if 32.0 g of...Ch. 17 - Prob. 3PCh. 17 - A column of soldiers, marching at 120 paces per...Ch. 17 - Prob. 5PCh. 17 - A man strikes one end of a thin rod with a hammer....Ch. 17 - SSM WWW A stone is dropped into a well. The splash...Ch. 17 - GO Hot chocolate effect. Tap a metal spoon inside...Ch. 17 - If the form of a sound wave traveling through air...Ch. 17 - Prob. 10PCh. 17 - SSM Diagnostic ultrasound of frequency 4.50 MHz is...Ch. 17 - The pressure in a traveling sound wave is given by...Ch. 17 - A sound wave of the form s = sm coskx t travels...Ch. 17 - Figure 17-32 shows the output from a pressure...Ch. 17 - GO A handclap on stage in an amphitheater sends...Ch. 17 - Two sound waves, from two different sources with...Ch. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - GO Figure 17-35 shows two isotropic point sources...Ch. 17 - Figure 17-36 shows four isotropic point sources of...Ch. 17 - SSM In Fig. 17-37, two speakers separated by...Ch. 17 - In Fig. 17-38, sound with a 40.0 cm wavelength...Ch. 17 - GO Figure 17-39 shows two point sources S1 and S2...Ch. 17 - Suppose that the sound level of a conversation is...Ch. 17 - A sound wave of frequency 300Hz has an intensity...Ch. 17 - Prob. 26PCh. 17 - SSM WWW A certain sound source is increased in...Ch. 17 - Two sounds differ in sound level by 1.00 dB. What...Ch. 17 - Prob. 29PCh. 17 - The source of a sound wave has a power of 1.00 W....Ch. 17 - GO When you crack a knuckle, you suddenly widen...Ch. 17 - Approximately a third of people with normal...Ch. 17 - Male Rana catesbeiana bullfrogs arc known for...Ch. 17 - GO Two atmospheric sound sources A and B emit...Ch. 17 - A point source emits 30.0 W of sound...Ch. 17 - Party hearing. As the number of people at a party...Ch. 17 - Prob. 37PCh. 17 - The water level in a vertical glass tube 1.00 m...Ch. 17 - Prob. 39PCh. 17 - Organ pipe A, with both ends open, has a...Ch. 17 - A violin siring 15.0 cm long and fixed at both...Ch. 17 - A sound wave in a fluid medium is reflected at a...Ch. 17 - SSM In Fig. 17-41, S is a small loudspeaker driven...Ch. 17 - The crest of a Parasaurolophus dinosaur skull is...Ch. 17 - In pipe A, the ratio of a particular harmonic...Ch. 17 - GO Pipe A. which is 1.20 m long and open at both...Ch. 17 - A well with vertical sides and water at the bottom...Ch. 17 - One of the harmonic frequencies of tube A with two...Ch. 17 - SSM A violin string 30.0 cm long with linear...Ch. 17 - Prob. 50PCh. 17 - The A string of a violin is a little too tightly...Ch. 17 - A tuning fork of unknown frequency makes 3.00...Ch. 17 - SSM Two identical piano wires have a fundamental...Ch. 17 - You have five tuning forks that oscillate at close...Ch. 17 - Prob. 55PCh. 17 - An ambulance with a siren emitting a whine at 1600...Ch. 17 - A state trooper chases a speeder along a straight...Ch. 17 - Prob. 58PCh. 17 - GO In Fig. 17-42, a French submarine and a U.S....Ch. 17 - A stationary motion detector sends sound waves of...Ch. 17 - GO A bat is flitting about in a cave, navigating...Ch. 17 - Figure 17-43 shows four tubes with lengths 1.0 m...Ch. 17 - ILWAn acoustic burglar alarm consists of a source...Ch. 17 - A stationary detector measures the frequency of a...Ch. 17 - GO A 2000 Hz siren and a civil defense official...Ch. 17 - GO Two trains are traveling toward each other at...Ch. 17 - SSM WWWA girl is sitting near the open window of a...Ch. 17 - Prob. 68PCh. 17 - SSMA jet plane passes over you at a height of 5000...Ch. 17 - A plane flies at 1.25 times the speed of sound....Ch. 17 - At a distance of 10 km, a 100 Hz horn, assumed to...Ch. 17 - A bullet is fired with a speed of 685 m/s. Find...Ch. 17 - Prob. 73PCh. 17 - The average density of Earths crust 10 km beneath...Ch. 17 - A certain loudspeaker system emits sound...Ch. 17 - Find the ratios greater to smaller of the a...Ch. 17 - Prob. 77PCh. 17 - A trumpet player on a moving railroad flatcar...Ch. 17 - GO In Fig. 17-46, sound of wavelength 0.850 m is...Ch. 17 - GO A detector initially moves at constant velocity...Ch. 17 - SSMa If two sound waves, one in air and one in...Ch. 17 - A continuous sinusoidal longitudinal wave is sent...Ch. 17 - SSMUltrasound, which consists of sound waves with...Ch. 17 - The speed of sound in a certain metal is vm. One...Ch. 17 - An avalanche of sand along some rare desert sand...Ch. 17 - A sound source moves along an x axis, between...Ch. 17 - SSMA siren emitting a sound of frequency 1000 Hz...Ch. 17 - Prob. 88PCh. 17 - Prob. 89PCh. 17 - Prob. 90PCh. 17 - Prob. 91PCh. 17 - You can estimate your distance from a lightning...Ch. 17 - SSMFigure 17-48 shows an air-filled, acoustic...Ch. 17 - Prob. 94PCh. 17 - SSMThe sound intensity is 0.0080 W/m2 at a...Ch. 17 - Four sound waves are to be sent through the same...Ch. 17 - Prob. 97PCh. 17 - A point source that is stationary on an x axis...Ch. 17 - You are standing at a distance D from an isotropic...Ch. 17 - Pipe A has only one open end; pipe B is four times...Ch. 17 - A pipe 0.60 m long and closed at one end is filled...Ch. 17 - A sound wave travels out uniformly in all...Ch. 17 - A police car is chasing a speeding Porsche 911....Ch. 17 - Suppose a spherical loudspeaker emits sound...Ch. 17 - In Fig. 17-35. S1 and S2 are two isotropic point...Ch. 17 - Prob. 106PCh. 17 - Kundts method for measuring the speed of sound. In...Ch. 17 - Prob. 108PCh. 17 - In Fig. 17-53, a point source S of sound waves...Ch. 17 - A person on a railroad car blows a trumpet note at...Ch. 17 - A listener at rest with respect to the air and the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Albinism in humans is inherited as a simple recessive trait. For the following families, determine the genotype...
Concepts of Genetics (12th Edition)
8. A human maintaining a vegan diet (containing no animal products) would be a:
a. producer
b. primary consume...
Human Biology: Concepts and Current Issues (8th Edition)
1. Write a single sentence, using no more than 25 words, to summarize each of the following cellular processes...
Human Anatomy & Physiology (2nd Edition)
Raw Oysters and Antacids: A Deadly Mix? The highly acidic environment of the stomach kills most bacteria before...
Microbiology with Diseases by Body System (5th Edition)
You microscopically examine scrapings from a case of Acan-thamoeba keratitis. You expect to see a. nothing. b. ...
Microbiology: An Introduction
7. Both Tim and Jan (problem 6) have a widow’s peak (see Module 9.8), but Mike has a straight hairline. What ar...
Campbell Biology: Concepts & Connections (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sound wave traveling in air has a pressure amplitude of 0.5 Pa. What is the intensity of the wave?arrow_forwardA sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardA bat emits a sound whose frequency is 81.8 kHz. The speed of sound in air at 20.0 oC is 343 m/s. However, the air temperature is 41.8 oC, so the speed of sound is not 343 m/s. Assume that air behaves like an ideal gas, and find the wavelength of the sound.arrow_forward
- Uf m/s. A certain instant camera determines the dis- tance to the subject by sending out a sound wave and measuring the time needed for the wave echo to return to the camera. How long would it take the sound wave to return to the camera if the subject were 7.39 m away? The speed of sound is 343 m/s. Answer in units of s.arrow_forwardA creature can detect very small objects, such as an insect whose length is approximately equal to one wavelength of the sound the bat makes. If a bat emits chirps at a frequency of 65 kHz, and if the speed of sound in air is 340 m/s, what is the Cmallest insect (in mm) the bat can detect?arrow_forwardA bat emits a sound whose frequency is 83.2 kHz83.2 kHz. The speed of sound in air at 20.0o C is 343 m/s. However, the air temperature is 40.5o C, so the speed of sound is not 343 m/s. Assume that air behaves like an ideal gas, and find the wavelength of the sound.arrow_forward
- Problem 9: One day when the speed of sound in air is 343 m/s, a fire truck traveling at vs = 34 m/s has a siren which produces a frequency of fs = 438 Hz.Randomized Variables vS = 34 m/sf = 438 Hz Part (a) What frequency (in Hertz) does the driver of the truck hear?Numeric : A numeric value is expected and not an expression.fd = __________________________________________Part (b) What frequency (in Hertz) does an observer hear when the truck is moving away?Numeric : A numeric value is expected and not an expression.fo = __________________________________________ Problem 10: A student knows that an ambulance siren has a frequency of fs = 395 Hz. He measures, when the ambulance is approaching him, the frequency fo = 416 Hz. Assume the speed of sound is 343 m/s in this problem. Part (a) Input an expression for the ambulance's speed, vs, in terms of the frequencies and the speed of sound v.Expression :vs =…arrow_forwardYou are standing on a train station platform as a train goes by close to you. As the train approaches, you hear the whistle sound at a frequency of f1 = 94 Hz. As the train recedes, you hear the whistle sound at a frequency of f2 = 77 Hz. Take the speed of sound in air to be v = 340 m/s. Find an equation for the speed of the sound source vs, in this case it is the speed of the train. Express your answer in terms of f1, f2, and v. Find the numeric value, in meters per second, for the speed of the train. Find an equation for the frequency of the train whistle fs ("s" is for "source") that you would hear if the train were not moving. Express your answer in terms of f1, f2, and v.arrow_forwardA source emits sound waves isotropically. The intensity of the waves 2.95 m from the source is 1.58 x 10-4 W/m2. Assuming that the energy of the waves is conserved, find the power of the source. Number i ! Units Warrow_forward
- You are standing on a train station platform as a train goes by close to you. As the train approaches, you hear the whistle sound at a frequency of f1 = 93 Hz. As the train recedes, you hear the whistle sound at a frequency of f2 = 79 Hz. Take the speed of sound in air to be v = 340 m/s. Find an equation for the speed of the sound source vs, in this case it is the speed of the train. Express your answer in terms of f1, f2, and v. Find the numeric value, in meters per second, for the speed of the train. Find an equation for the frequency of the train whistle fs ("s" is for "source") that you would hear if the train were not moving. Express your answer in terms of f1, f2, and v. Find the numeric value, in hertz, for the frequency of the train whistle fs that you would hear if the train were not moving.arrow_forwardFind the wavelength in air of an 22-Hz sound wave at 486 m/s, which is one of the lowest frequencies that are detectable by the human ear. No need to include the unit. Write your answer in whole numbers.arrow_forwardThe light intensity (1.006x10^2) cm from a point source is (1.4794x10^0) kW/m². What is the intensity (3.73221x10^2) m away from the same source? Express your result with four significant figures in W/m2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY