Fundamentals of Physics, Volume 1, Chapter 1-20
10th Edition
ISBN: 9781118233764
Author: David Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 105P
In Fig. 17-35. S1 and S2 are two isotropic point sources of sound. They emit waves in phase at wavelength 0.50 m; they are separated by D = 1.60 m. If we move a sound detector along a large circle centered at the midpoint between the sources, at how many points do waves arrive at the detector (a) exactly in phase and (b) exactly out of phase?
Figure 17-35 Problems 19 and 105.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The figure shows four isotropic point sources of sound that are uniformly spaced on an x axis. The sources emit sound at the same
wavelength and same amplitude Sm, and they emit in phase. A point P is shown on the x axis. Assume that as the sound waves travel to
P, the decrease in their amplitude is negligible. What multiple of sm is the amplitude of the net wave at P if distance d in the figure is (a)
5λ/4, (b) 51/2, and (c) 5λ?
(a) Number i
(b) Number i
(c) Number
i
|aa|
Units
Units
Units
◄►
P
Consider a composite wave formed by two plane waves with slightly different frequencies of
0, = 2.7 x 1012 rad/s and aw2
= 2.9 × 1012 rad/s
and respective wavelengths A1
= 17.0 nm and 2
16.0 nm. Calculate the propagation velocity
%D
of the envelope wave and give your results in units of m/s with 1 digit precision, rounding off to
one decimal place, i.e. the nearest tenth. (time budget 5min)
can you please ans (a), (b) & (c)?
Chapter 17 Solutions
Fundamentals of Physics, Volume 1, Chapter 1-20
Ch. 17 - In a first experiment, a sinusoidal sound wave is...Ch. 17 - In Fig. 17-25, two point sources S1, and S2, which...Ch. 17 - In Fig. 17-26, three long tubes A,B, and C are...Ch. 17 - Prob. 4QCh. 17 - In Fig. 17-27, pipe A is made to oscillate in its...Ch. 17 - Prob. 6QCh. 17 - Figure 17-28 shows a moving sound source S that...Ch. 17 - Prob. 8QCh. 17 - For a particular tube, here are four of the six...Ch. 17 - Prob. 10Q
Ch. 17 - You are given four tuning forks. The fork with the...Ch. 17 - Two spectators at a soccer game see, and a moment...Ch. 17 - What is the bulk modulus of oxygen if 32.0 g of...Ch. 17 - Prob. 3PCh. 17 - A column of soldiers, marching at 120 paces per...Ch. 17 - Prob. 5PCh. 17 - A man strikes one end of a thin rod with a hammer....Ch. 17 - SSM WWW A stone is dropped into a well. The splash...Ch. 17 - GO Hot chocolate effect. Tap a metal spoon inside...Ch. 17 - If the form of a sound wave traveling through air...Ch. 17 - Prob. 10PCh. 17 - SSM Diagnostic ultrasound of frequency 4.50 MHz is...Ch. 17 - The pressure in a traveling sound wave is given by...Ch. 17 - A sound wave of the form s = sm coskx t travels...Ch. 17 - Figure 17-32 shows the output from a pressure...Ch. 17 - GO A handclap on stage in an amphitheater sends...Ch. 17 - Two sound waves, from two different sources with...Ch. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - GO Figure 17-35 shows two isotropic point sources...Ch. 17 - Figure 17-36 shows four isotropic point sources of...Ch. 17 - SSM In Fig. 17-37, two speakers separated by...Ch. 17 - In Fig. 17-38, sound with a 40.0 cm wavelength...Ch. 17 - GO Figure 17-39 shows two point sources S1 and S2...Ch. 17 - Suppose that the sound level of a conversation is...Ch. 17 - A sound wave of frequency 300Hz has an intensity...Ch. 17 - Prob. 26PCh. 17 - SSM WWW A certain sound source is increased in...Ch. 17 - Two sounds differ in sound level by 1.00 dB. What...Ch. 17 - Prob. 29PCh. 17 - The source of a sound wave has a power of 1.00 W....Ch. 17 - GO When you crack a knuckle, you suddenly widen...Ch. 17 - Approximately a third of people with normal...Ch. 17 - Male Rana catesbeiana bullfrogs arc known for...Ch. 17 - GO Two atmospheric sound sources A and B emit...Ch. 17 - A point source emits 30.0 W of sound...Ch. 17 - Party hearing. As the number of people at a party...Ch. 17 - Prob. 37PCh. 17 - The water level in a vertical glass tube 1.00 m...Ch. 17 - Prob. 39PCh. 17 - Organ pipe A, with both ends open, has a...Ch. 17 - A violin siring 15.0 cm long and fixed at both...Ch. 17 - A sound wave in a fluid medium is reflected at a...Ch. 17 - SSM In Fig. 17-41, S is a small loudspeaker driven...Ch. 17 - The crest of a Parasaurolophus dinosaur skull is...Ch. 17 - In pipe A, the ratio of a particular harmonic...Ch. 17 - GO Pipe A. which is 1.20 m long and open at both...Ch. 17 - A well with vertical sides and water at the bottom...Ch. 17 - One of the harmonic frequencies of tube A with two...Ch. 17 - SSM A violin string 30.0 cm long with linear...Ch. 17 - Prob. 50PCh. 17 - The A string of a violin is a little too tightly...Ch. 17 - A tuning fork of unknown frequency makes 3.00...Ch. 17 - SSM Two identical piano wires have a fundamental...Ch. 17 - You have five tuning forks that oscillate at close...Ch. 17 - Prob. 55PCh. 17 - An ambulance with a siren emitting a whine at 1600...Ch. 17 - A state trooper chases a speeder along a straight...Ch. 17 - Prob. 58PCh. 17 - GO In Fig. 17-42, a French submarine and a U.S....Ch. 17 - A stationary motion detector sends sound waves of...Ch. 17 - GO A bat is flitting about in a cave, navigating...Ch. 17 - Figure 17-43 shows four tubes with lengths 1.0 m...Ch. 17 - ILWAn acoustic burglar alarm consists of a source...Ch. 17 - A stationary detector measures the frequency of a...Ch. 17 - GO A 2000 Hz siren and a civil defense official...Ch. 17 - GO Two trains are traveling toward each other at...Ch. 17 - SSM WWWA girl is sitting near the open window of a...Ch. 17 - Prob. 68PCh. 17 - SSMA jet plane passes over you at a height of 5000...Ch. 17 - A plane flies at 1.25 times the speed of sound....Ch. 17 - At a distance of 10 km, a 100 Hz horn, assumed to...Ch. 17 - A bullet is fired with a speed of 685 m/s. Find...Ch. 17 - Prob. 73PCh. 17 - The average density of Earths crust 10 km beneath...Ch. 17 - A certain loudspeaker system emits sound...Ch. 17 - Find the ratios greater to smaller of the a...Ch. 17 - Prob. 77PCh. 17 - A trumpet player on a moving railroad flatcar...Ch. 17 - GO In Fig. 17-46, sound of wavelength 0.850 m is...Ch. 17 - GO A detector initially moves at constant velocity...Ch. 17 - SSMa If two sound waves, one in air and one in...Ch. 17 - A continuous sinusoidal longitudinal wave is sent...Ch. 17 - SSMUltrasound, which consists of sound waves with...Ch. 17 - The speed of sound in a certain metal is vm. One...Ch. 17 - An avalanche of sand along some rare desert sand...Ch. 17 - A sound source moves along an x axis, between...Ch. 17 - SSMA siren emitting a sound of frequency 1000 Hz...Ch. 17 - Prob. 88PCh. 17 - Prob. 89PCh. 17 - Prob. 90PCh. 17 - Prob. 91PCh. 17 - You can estimate your distance from a lightning...Ch. 17 - SSMFigure 17-48 shows an air-filled, acoustic...Ch. 17 - Prob. 94PCh. 17 - SSMThe sound intensity is 0.0080 W/m2 at a...Ch. 17 - Four sound waves are to be sent through the same...Ch. 17 - Prob. 97PCh. 17 - A point source that is stationary on an x axis...Ch. 17 - You are standing at a distance D from an isotropic...Ch. 17 - Pipe A has only one open end; pipe B is four times...Ch. 17 - A pipe 0.60 m long and closed at one end is filled...Ch. 17 - A sound wave travels out uniformly in all...Ch. 17 - A police car is chasing a speeding Porsche 911....Ch. 17 - Suppose a spherical loudspeaker emits sound...Ch. 17 - In Fig. 17-35. S1 and S2 are two isotropic point...Ch. 17 - Prob. 106PCh. 17 - Kundts method for measuring the speed of sound. In...Ch. 17 - Prob. 108PCh. 17 - In Fig. 17-53, a point source S of sound waves...Ch. 17 - A person on a railroad car blows a trumpet note at...Ch. 17 - A listener at rest with respect to the air and the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Which culture uses NAD+? Use the following choices to answer questions. a. E. coli growing in glucose broth at ...
Microbiology: An Introduction
In humans, hemophilia A (OMIM 306700) is an X-linked recessive disorder that affects the gene for factor VIII p...
Genetic Analysis: An Integrated Approach (3rd Edition)
Examine the graph in Figure 6.3. Note that the growth rate increases slowly until the optimum is reached and th...
Microbiology with Diseases by Body System (5th Edition)
77. Write a molecular equation for the precipitation reaction that occurs (if any) when each pair of aqueous so...
Chemistry: A Molecular Approach (4th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
Choose the best answer to each of the following. Explain your reasoning. The reason we do not have a solar ecli...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The figure shows four isotropic point sources of sound that are uniformly spaced on an x axis. The sources emit sound at the same wavelength A and same amplitude sm: and they emit in phase. A point P is shown on the x axis. Assume that as the sound waves travel to P, the decrease in their amplitude is negligible. What multiple of sm is the amplitude of the net wave at P if distance d in the figure is (a)1A, (b)2A, and (c)4A? Sa (a) Number 45 Units m (b) Number 45 Units (c) Number 45 Units marrow_forwardSubject: physicsarrow_forwardAn interface is formed between a block of aluminium (with an acoustic impedance of 1.8 x 107 kg m2 s') and a block of copper (with an acoustic impedance of 4.6 x 107 kg m-2 s-1). Longitudinal sound waves travelling through the aluminium are normally incident on the boundary, and are partially reflected. a) What is the ratio of the amplitude of the reflected wave to that of the incident wave? Number b) What is the ratio of the amplitude of the transmitted wave to that of the incident wave? Number c) What percentage of the incident power is transmitted? Number d) What percentage of the incident power is reflected? Number % Ouit P Sove Questiarrow_forward
- c) When testing a supersonic jet nozzle for certification purposes, an aerospace engineer used a far-field microphone to measure the noise power spectrum density (PSD) radi- ated by the jet issuing from the nozzle. The engineer found that the measured noise spectrum, PSD(f)=: dW where f is frequency and W is acoustic power can be repres- df ented by a piece-wise linear function (Equation1): PSD=0,if f2fo. Calculate the acoustic power, W in physical pressure units (Pa") corresponding to the jet noise perceived at the same microphone location as a function of A and fo. What is the acoustic power in case A=200 Pa'/ Hz and fo=100 Hz? Provide a clear explanation of every step of your analysis.arrow_forwardA point source that is stationary on an x axis emits a sinusoidal sound wave at a frequency of 686 Hz and speed 343 m/s. The wave travels radially outward from the source, causing air molecules to oscillate radially inward and outward. Let us define a wavefront as a line that connects points where the air molecules have the maximum, radially outward displacement. At any given instant, the wavefronts are concentric circles that are centered on the source. (a) Along x, what is the adjacent wavefront separation? Next, the source moves along x at a speed of 110 m/s. Along x, what are the wavefront separations (b) in front of and (c) behind the source?arrow_forwardProblem 17: Two small loudspeakers, L1 and L2, are oscillating in phase at a frequency of 516 Hz, sending out soundwave crests and troughs in synchrony. The speakers are spaced 4.1 m apart. The speed of sound propagation in air is 344 m/s. If you move a small microphone, M, slowly, along a straight line from L1 to L2, you will dectect maxima and minima of sound intensity, i.e., in the loudness of the sound. How such maxima and minima will you find between L1 and L2? many l2 – l1, where lz is the distance from L2 to Hints: Consider the pathlength difference, Al M and and li is the distance from L1 to M. (1) What is the range of Al-values covered as M is moved from Lị to L2? In other words: What is the initial value of Al when M starts from L1? What is the final value of Al when M arrives at L2? (2) An intensity maximum occurs whenever Al reaches the values Al 0, ±1A, ±2), (3) An intensity minimum .... occurs when Al +}1, ±}A, .... (A) 6 maxima, 5 minima (B) 6 maxima, 7 minima (C) 15…arrow_forward
- Consider a sound wave moving through the air modeled with the equation s(x, t) = 5.00 nm cos(59.00 m-'x – 19.00 × 103 s-'t). What is the shortest time (in s) required for an air molecule to move between 2.50 nm and -2.50 nm?arrow_forwardTwo compact sources of sound near each other produce in-phase sine waves at each source. One source is positioned at a distance x, =12.00 m from a microphone 2. and the other source is positioned at a distance of x, =13.40 m from the same microphone. The amplitude of the sound at the microphone from each source by itself is s = 0.0350µm. The plane waves come from essentially the same direction so there will be interference. a. If the frequency emitted by the two sources is f = 425.0Hz and the speed of sound is v= 340.0m/ s, what is the phase difference, 8, in radians, due to the path length differences to the microphone? b. When both sources are on, interference changes the total amplitude to s, = 2s, cos(8/2). What is the total amplitude for the phase difference found in part 'a.’?arrow_forwardSound Waves 10 8 Wave B 4, 2 --2 --4 Wave C --6 --8 Wave A -10 time (milliseconds) Amplitude (volts)arrow_forward
- The figure shows four isotropic point sources of sound that are uniformly spaced on an x axis. The sources emit sound at the same wavelength and same amplitude sm, and they emit in phase. A point P is shown on the x axis. Assume that as the sound waves travel to P, the decrease in their amplitude is negligible. What multiple of sm is the amplitude of the net wave at P if distance d in the figure is (a)1A, (b)2A, and (c)4A? (a) Number i Units (b) Number i Units (c) Number i Unitsarrow_forwardIf the velocity of sound in a solid is of the order 103 m/s, compare the frequency of the sound wave λ = 20 Å for (a) a monoatomic system and (b) acoustic waves and optical waves in a diatomic system containing two identical atoms (M=m) per unit cell of interatomic spacing 2.2 Å.arrow_forwardA wave is given by y=asin(kx-wt) where w=18rad/s and wavelength=2πm. Determine the speed of a particle of the medium when kx=wtarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY