Fundamentals of Physics, Volume 1, Chapter 1-20
10th Edition
ISBN: 9781118233764
Author: David Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 74P
The average density of Earth’s crust 10 km beneath the continents is 2.7 g/cm3. The speed of longitudinal seismic waves at that depth, found by timing their arrival from distant earthquakes, is 5.4 km/s. Find the bulk modulus of Earth’s crust at that depth. For comparison, the bulk modulus of steel is about 16 × 1010 Pa.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The average density of Earth’s crust 10 km beneath the continents is 2.7 g/cm3. The speed of longitudinal seismic waves at that depth, found by timing their arrival from distant earthquakes, is 5.4 km/s. Find the bulk modulus of Earth’s crust at that depth. For comparison, the bulk modulus of steel is about 16 * 10^10 Pa.
Earthquakes at fault lines in Earth's crust create seismic waves, which are longitudinal (P-waves) or transverse (S-waves). The P-waves have a speed of about 6 km/s. Estimate the average bulk modulus of Earth's crust given that the density of rock is about 2,800 kg/m3.
Earthquakes at fault lines in Earth’s crust create seismic waves, which are longitudinal (P - waves) or transverse (S - waves). The P-waves have a speed of about 7 km/s. Estimate the average bulk modulus of Earth’s crust given that the density of rock is about 2500 kg/m3.
Chapter 17 Solutions
Fundamentals of Physics, Volume 1, Chapter 1-20
Ch. 17 - In a first experiment, a sinusoidal sound wave is...Ch. 17 - In Fig. 17-25, two point sources S1, and S2, which...Ch. 17 - In Fig. 17-26, three long tubes A,B, and C are...Ch. 17 - Prob. 4QCh. 17 - In Fig. 17-27, pipe A is made to oscillate in its...Ch. 17 - Prob. 6QCh. 17 - Figure 17-28 shows a moving sound source S that...Ch. 17 - Prob. 8QCh. 17 - For a particular tube, here are four of the six...Ch. 17 - Prob. 10Q
Ch. 17 - You are given four tuning forks. The fork with the...Ch. 17 - Two spectators at a soccer game see, and a moment...Ch. 17 - What is the bulk modulus of oxygen if 32.0 g of...Ch. 17 - Prob. 3PCh. 17 - A column of soldiers, marching at 120 paces per...Ch. 17 - Prob. 5PCh. 17 - A man strikes one end of a thin rod with a hammer....Ch. 17 - SSM WWW A stone is dropped into a well. The splash...Ch. 17 - GO Hot chocolate effect. Tap a metal spoon inside...Ch. 17 - If the form of a sound wave traveling through air...Ch. 17 - Prob. 10PCh. 17 - SSM Diagnostic ultrasound of frequency 4.50 MHz is...Ch. 17 - The pressure in a traveling sound wave is given by...Ch. 17 - A sound wave of the form s = sm coskx t travels...Ch. 17 - Figure 17-32 shows the output from a pressure...Ch. 17 - GO A handclap on stage in an amphitheater sends...Ch. 17 - Two sound waves, from two different sources with...Ch. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - GO Figure 17-35 shows two isotropic point sources...Ch. 17 - Figure 17-36 shows four isotropic point sources of...Ch. 17 - SSM In Fig. 17-37, two speakers separated by...Ch. 17 - In Fig. 17-38, sound with a 40.0 cm wavelength...Ch. 17 - GO Figure 17-39 shows two point sources S1 and S2...Ch. 17 - Suppose that the sound level of a conversation is...Ch. 17 - A sound wave of frequency 300Hz has an intensity...Ch. 17 - Prob. 26PCh. 17 - SSM WWW A certain sound source is increased in...Ch. 17 - Two sounds differ in sound level by 1.00 dB. What...Ch. 17 - Prob. 29PCh. 17 - The source of a sound wave has a power of 1.00 W....Ch. 17 - GO When you crack a knuckle, you suddenly widen...Ch. 17 - Approximately a third of people with normal...Ch. 17 - Male Rana catesbeiana bullfrogs arc known for...Ch. 17 - GO Two atmospheric sound sources A and B emit...Ch. 17 - A point source emits 30.0 W of sound...Ch. 17 - Party hearing. As the number of people at a party...Ch. 17 - Prob. 37PCh. 17 - The water level in a vertical glass tube 1.00 m...Ch. 17 - Prob. 39PCh. 17 - Organ pipe A, with both ends open, has a...Ch. 17 - A violin siring 15.0 cm long and fixed at both...Ch. 17 - A sound wave in a fluid medium is reflected at a...Ch. 17 - SSM In Fig. 17-41, S is a small loudspeaker driven...Ch. 17 - The crest of a Parasaurolophus dinosaur skull is...Ch. 17 - In pipe A, the ratio of a particular harmonic...Ch. 17 - GO Pipe A. which is 1.20 m long and open at both...Ch. 17 - A well with vertical sides and water at the bottom...Ch. 17 - One of the harmonic frequencies of tube A with two...Ch. 17 - SSM A violin string 30.0 cm long with linear...Ch. 17 - Prob. 50PCh. 17 - The A string of a violin is a little too tightly...Ch. 17 - A tuning fork of unknown frequency makes 3.00...Ch. 17 - SSM Two identical piano wires have a fundamental...Ch. 17 - You have five tuning forks that oscillate at close...Ch. 17 - Prob. 55PCh. 17 - An ambulance with a siren emitting a whine at 1600...Ch. 17 - A state trooper chases a speeder along a straight...Ch. 17 - Prob. 58PCh. 17 - GO In Fig. 17-42, a French submarine and a U.S....Ch. 17 - A stationary motion detector sends sound waves of...Ch. 17 - GO A bat is flitting about in a cave, navigating...Ch. 17 - Figure 17-43 shows four tubes with lengths 1.0 m...Ch. 17 - ILWAn acoustic burglar alarm consists of a source...Ch. 17 - A stationary detector measures the frequency of a...Ch. 17 - GO A 2000 Hz siren and a civil defense official...Ch. 17 - GO Two trains are traveling toward each other at...Ch. 17 - SSM WWWA girl is sitting near the open window of a...Ch. 17 - Prob. 68PCh. 17 - SSMA jet plane passes over you at a height of 5000...Ch. 17 - A plane flies at 1.25 times the speed of sound....Ch. 17 - At a distance of 10 km, a 100 Hz horn, assumed to...Ch. 17 - A bullet is fired with a speed of 685 m/s. Find...Ch. 17 - Prob. 73PCh. 17 - The average density of Earths crust 10 km beneath...Ch. 17 - A certain loudspeaker system emits sound...Ch. 17 - Find the ratios greater to smaller of the a...Ch. 17 - Prob. 77PCh. 17 - A trumpet player on a moving railroad flatcar...Ch. 17 - GO In Fig. 17-46, sound of wavelength 0.850 m is...Ch. 17 - GO A detector initially moves at constant velocity...Ch. 17 - SSMa If two sound waves, one in air and one in...Ch. 17 - A continuous sinusoidal longitudinal wave is sent...Ch. 17 - SSMUltrasound, which consists of sound waves with...Ch. 17 - The speed of sound in a certain metal is vm. One...Ch. 17 - An avalanche of sand along some rare desert sand...Ch. 17 - A sound source moves along an x axis, between...Ch. 17 - SSMA siren emitting a sound of frequency 1000 Hz...Ch. 17 - Prob. 88PCh. 17 - Prob. 89PCh. 17 - Prob. 90PCh. 17 - Prob. 91PCh. 17 - You can estimate your distance from a lightning...Ch. 17 - SSMFigure 17-48 shows an air-filled, acoustic...Ch. 17 - Prob. 94PCh. 17 - SSMThe sound intensity is 0.0080 W/m2 at a...Ch. 17 - Four sound waves are to be sent through the same...Ch. 17 - Prob. 97PCh. 17 - A point source that is stationary on an x axis...Ch. 17 - You are standing at a distance D from an isotropic...Ch. 17 - Pipe A has only one open end; pipe B is four times...Ch. 17 - A pipe 0.60 m long and closed at one end is filled...Ch. 17 - A sound wave travels out uniformly in all...Ch. 17 - A police car is chasing a speeding Porsche 911....Ch. 17 - Suppose a spherical loudspeaker emits sound...Ch. 17 - In Fig. 17-35. S1 and S2 are two isotropic point...Ch. 17 - Prob. 106PCh. 17 - Kundts method for measuring the speed of sound. In...Ch. 17 - Prob. 108PCh. 17 - In Fig. 17-53, a point source S of sound waves...Ch. 17 - A person on a railroad car blows a trumpet note at...Ch. 17 - A listener at rest with respect to the air and the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Why might H2 metabolism have evolved as a mechanism for energy conservation in the earliest organisms on Earth?
Brock Biology of Microorganisms (15th Edition)
Why are the top predators in food chains most severely affected by pesticides such as DDT?
Campbell Essential Biology (7th Edition)
Is the general topography of the land in Sections 7 and 8 in the northwest portion of the region higher or lowe...
Applications and Investigations in Earth Science (9th Edition)
What are the four types of tissues, and what are their characteristics?
Human Anatomy & Physiology (2nd Edition)
Choose the best answer to each of the following. Explain your reasoning. Galileos contributions to astronomy in...
Cosmic Perspective Fundamentals
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A cable with a linear density of =0.2 kg/m is hung from telephone poles. The tension in the cable is 500.00 N. The distance between poles is 20 meters. The wind blows across the line, causing the cable resonate. A standing waves pattern is produced that has 4.5 wavelengths between the two poles. The air temperature is T=20C . What are the frequency and wavelength of the hum?arrow_forwardHow many times a minute does a boat bob up and down on ocean waves that have a wavelength of 40.0 m and a propagation speed of 5.00 m/s?arrow_forwardAs shown in Figure P14.37, water is pumped into a tall, vertical cylinder at a volume flow rate R. The radius of the cylinder is r, and at the open top of the cylinder a tuning fork is vibrating with a frequency f. As the water rises, what time interval elapses between successive resonances? Figure P14.37 Problems 37 and 38.arrow_forward
- Porpoises emit sound waves that they use for navigation. If the wavelength of the sound wave emitted is 4.5 cm, and the speed of sound in the water is v=1530 m/s, what is the period of the sound?arrow_forwardA string has a mass of 150 g and a length of 3.4 m. One end of the string is fixed to a lab stand and the other is attached to a spring with a spring constant of ks=100 N/m. The free end of the spring is attached to another lab pole. The tension in the string is maintained by the spring. The lab poles are separated by a distance that stretches the spring 2.00 cm. The string is plucked and a pulse travels along the string. What is the propagation speed of the pulse?arrow_forwardConsider what is shown below. A 20.00-kg mass rests on a frictionless ramp inclined at 45° . A string with a linear mass density of =0.025 kg/m is attached to the 20.00-kg mass. The string passes over a frictionless pulley of negligible mass and is attached to a hanging mass (m). The system is in static equilibrium. A wave is induced on the string and travels up the ramp. (a) What is the mass of the hanging mass (m)? (b) At what wave speed does the wave travel up the string?arrow_forward
- The overall length of a piccolo is 32.0 cm. The resonating air column is open at both ends. (a) Find the frequency of the lowest note a piccolo can sound. (b) Opening holes in the side of a piccolo effectively shortens the length of the resonant column. Assume the highest note a piccolo can sound is 4 000 Hz. Find the distance between adjacent anti-nodes for this mode of vibration.arrow_forwardRank the waves represented by the following functions from the largest to the smallest according to (i) their amplitudes, (ii) their wavelengths, (iii) their frequencies, (iv) their periods, and (v) their speeds. If the values of a quantity are equal for two waves, show them as having equal rank. For all functions, x and y are in meters and t is in seconds. (a) y = 4 sin (3x 15t) (b) y = 6 cos (3x + 15t 2) (c) y = 8 sin (2x + 15t) (d) y = 8 cos (4x + 20t) (e) y = 7 sin (6x + 24t)arrow_forwardThe density of aluminum is 2.7 × 106 g/m3. The speed of longitudinal waves in an aluminum rod is measured to be 5.1 × 103 m/s. What is the value of Young's modulus for this aluminum?arrow_forward
- A granite rod of 60 cm length is clamped at its middle point and is set into longitudinal vibrations. The density of granite is 2.7 x 10° kg/m and its Young's modulus is 9.27 × 101° Pa. What will be the fundamental frequency of the longitudinal vibrations ?arrow_forwardA microphone receiving a pure sound tone feeds an oscilloscope, producing a wave on its screen. If the sound intensity is originally 2.00 × 10−5 W/m2 , but is turned up until the amplitude increases by 30.0% , what is the new intensity?arrow_forwardOne technique of estimating the length of a metal is by recording the time it takes for a pulse to travel from one end to the other. The student finds that the time is 3.56 × 10–3 s. The Young’s modulus of copper is 1.1 × 1011 N/m2; and its density is 8890 kg/m3. How long is the rod?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY