Concept explainers
In Fig. 17-38, sound with a 40.0 cm wavelength travels rightward from a source and through a tube that consists of a straight portion and a half-circle. Part of the sound wave travels through the half-circle and then rejoins the rest of the wave, which goes directly through the straight portion. This rejoining results in interference. What is the smallest radius r that results in an intensity minimum at the detector?
Figure 17-38 Problem 22.
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
Fundamentals of Physics, Volume 1, Chapter 1-20
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
Campbell Biology (11th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Cosmic Perspective Fundamentals
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Biology: Life on Earth with Physiology (11th Edition)
- A pipe is observed to have a fundamental frequency of 345 Hz. Assume the pipe is filled with air (v = 343 m/s). What is the length of the pipe if the pipe is a. closed at one end and b. open at both ends?arrow_forwardSome studies suggest that the upper frequency limit of hearing is determined by the diameter of the eardrum. The wavelength of the sound wave and the diameter of the eardrum are approximately equal at this upper limit. If the relationship holds exactly, what is the diameter of the eardrum of a person capable of hearing 2.00 x 104 Hz? (Assume a body temperature of 37.0°C.)arrow_forwardA sound wave propagating in air has a frequency of (7.86) kHz Calculate the change in wavelength when the wave, initially traveling in a region where T = (27.35}°C, enters a region where T = (5.99)°C.arrow_forward
- 5-7. An airborne plane sound wave of frequency 1881 Hz is incident at an' angle 45° on the calm surface of a freshwater lake. Assume the tempera- ture is 20°C for the water and the air. The sound pressure level (SPL) of the incident sound wave is 100 dB (re 20µPa). What is the SPL of the sound in the water (re 1µPa) 0.1 m below the surface?arrow_forwardThe intensity of a sound source is described by an inverse-square law only if the source is very small (a point source) and only if the waves can travel unimpeded in all directions. For an extended source or in a situation where obstacles absorb or reflect the waves, the intensity at distance r can often be expressed as I = cPsource/r, where c is a constant and the exponent î, which would be 2 for an ideal spherical wave, depends on the situation. In one such situation, you use a sound meter to measure the sound intensity level at different distances from a source, acquiring the following data: Distance, r (m) 1 3 10 30 100 Intensity level, ß (dB) 100 93 85 78 70 Part A You want to determine the exponent a for this sound source by graphing the data. Select the appropriate variables to graph on each axis that will produce a straight- line graph with either a slope or intercept that will allow you to determine x. Sort all variables into the appropriate bins. ► View Available Hint(s)…arrow_forwardThe higher frequency limit for human hearing is 22.8 kHz. If the air temperature is 33.3 °C, the corresponding wavelength (m) of the sound is:arrow_forward
- Figure 17-37 shows a transmitter and receiver of waves con- tained in a single instrument. It is used to measure the speed u of a target object (idealized as a flat plate) that is moving directly toward the unit, by analyzing the waves reflected from the target. What is u if the emitted frequency is 18.0 kHz and the detected frequency (of the returning waves) is 22.2 kHz?arrow_forwardA sound wave with intensity 2 x 10 -3 W/m2 is perceived to be modestly loud. Your eardrum is 6 mm in diameter. How much energy will be transferred to your eardrum while listening to this sound for 1 minute?arrow_forwardProblem 3: The human ear can detect a minimum intensity of Io = 10-12 W/m2, which has a sound intensity of 0 dB.Randomized Variables β = 45 dB If the student hears a sound at 45 dB, what is the intensity of the sound?Numeric : A numeric value is expected and not an expression.I = __________________________________________ Problem 4: A student exchanges the stock headphones (β1 = 87 dB) for her mp3 player for a new set that is louder (β2 = 95 dB). If the first set produced a power of P1 = 0.5 W how much power does the new set produce, P2 in W?Numeric : A numeric value is expected and not an expression.P2 = __________________________________________arrow_forward
- Problem 7: An audio engineer takes decibel readings at distances of r1 = 11 m and r2 = 25 m from a concert stage speaker during a sound check. When he is r1 from the speaker, the engineer registers a decibel level of β1 = 103 dB on his loudness meter.Randomized Variables r1 = 11 mr2 = 25 mβ1 = 103 dBPart (a) What is the intensity of the sound, I1, in watts per square meter, that is measured by the loudness meter when the engineer is a distance of r1 from the speaker? Part (b) How much power P, in watts, is coming from the speaker during the sound check at distance r1? Part (c) Assuming that the speaker output does not change between the two measurements at r1 and r2, what sound intensity level β2, in decibels, will the loudness meter report when the engineer is at a distance r2 from the speaker?arrow_forwardProblem 1: An audio engineer takes decibel readings at distances of r = 14 m and ry = 22 m from a concert stage speaker during a sound check. When he is r, from the speaker, the engineer registers a decibel level of B1 = 117 dB on his loudness meter. Randomized Variables r1 = 14 m r2 = 22 m B1 = 117 dB Part (a) What is the intensity of the sound, I, in watts per square meter, that is measured by the loudness meter when the engineer is a distance of r, from the speaker? I = sin() cos() tan() 8 HOME cotan() asin() acos() 4 5 6. atan() acotan() sinh() 1 2 3 tanh() ODegrees O Radians cosh() cotanh() END vol BACKSPACE DEL CLEAR Submit Hint Feedback I give up! Part (b) How much power P, in watts, is coming from the speaker during the sound check at distance r? Part (c) Assuming that the speaker output does not change between the two measurements at r1 and r2. what sound intensity level B2, in decibels, will the loudness meter report when the engineer is at a distance rz from the speaker?arrow_forwardThe amplitude of a sound wave is measured in terms of its maximum gauge pressure. By what factor does the amplitude of a sound wave increase if the sound level goes up by 36.0 dB?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning