Fundamentals of Physics, Volume 1, Chapter 1-20
10th Edition
ISBN: 9781118233764
Author: David Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 17P
To determine
To find:
a) Lowest frequency
b) The number by which
c) The third lowest frequency
d) The lowest frequency
e) The number by which
f) The number by which
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Two loudspeakers are located 2.81m apart on an outdoor stage. A listener is 24.5 m from one and 26.1 m from the other.
During the sound check, a signal generator drives the two speakers in phase with the same amplitude and frequency. The
transmitted frequency is swept through the audible range (20 Hz to 20 kHz). (a) What is the lowest frequency fmin, that
gives minimum signal (destructive interference) at the listener's location? By what number must fmin,1 be multiplied to get
(b) the second lowest frequency fmin,2 that gives minimum signal and (c) the third lowest frequency fmin,3 that gives
minimum signal? (d) What is the lowest frequency fmax.1 that gives maximum signal (constructive interference) at the
listener's location? By what number must fmax.1 be multiplied to get (e) the second lowest frequency fmax,2 that gives
maximum signal and (f) the third lowest frequency fmax.3 that gives maximum signal? (Take the speed of sound to be 343
m/s.)
a
VE
es
(a) Number
T107.19
Units
THz…
Two loud speakers are located 3.35 m apart on an outdoor stage. A listener is 18.3 m from one and 19.5 m from the other. During the sound check, a signal generator drives the two speakers in phase with the same amplitude and frequency. The transmitted frequency is swept through the audible range (20 Hz to 20 kHz). (a) What is the lowest frequency fmin,1 that gives minimum signal (destructive interference) at the listener’s location? By what number must fmin,1 be multiplied to get (b) the second lowest frequency fmin,2 that gives minimum signal and (c) the third lowest frequency fmin,3 that gives minimum signal? (d) What is the lowest frequency fmax,1 that gives maximum signal (constructive interference) at the listener’s location? By what number must fmax,1 be multiplied to get (e) the second lowest frequency fmax,2 that gives maximum signal and (f) the third lowest frequency fmax,3 that gives maximum signal?
wo loud speakers are located 3.35 m apart on an outdoor stage. A listener is 18.3 m from one and 19.5 m from the other. During the sound check, a signal generator drives the two speakers in phase with the same amplitude and frequency. The transmitted frequency is swept through the audible range (20 Hz to 20 kHz). (a) What is the lowest frequency fmax,1 that gives maximum signal (constructive interference) at the listener’s location? By what number must fmax,1 be multiplied to get (b) the second lowest frequency fmax,2 that gives maximum signal and (c) the third lowest frequency fmax,3 that gives maximum signal?
Chapter 17 Solutions
Fundamentals of Physics, Volume 1, Chapter 1-20
Ch. 17 - In a first experiment, a sinusoidal sound wave is...Ch. 17 - In Fig. 17-25, two point sources S1, and S2, which...Ch. 17 - In Fig. 17-26, three long tubes A,B, and C are...Ch. 17 - Prob. 4QCh. 17 - In Fig. 17-27, pipe A is made to oscillate in its...Ch. 17 - Prob. 6QCh. 17 - Figure 17-28 shows a moving sound source S that...Ch. 17 - Prob. 8QCh. 17 - For a particular tube, here are four of the six...Ch. 17 - Prob. 10Q
Ch. 17 - You are given four tuning forks. The fork with the...Ch. 17 - Two spectators at a soccer game see, and a moment...Ch. 17 - What is the bulk modulus of oxygen if 32.0 g of...Ch. 17 - Prob. 3PCh. 17 - A column of soldiers, marching at 120 paces per...Ch. 17 - Prob. 5PCh. 17 - A man strikes one end of a thin rod with a hammer....Ch. 17 - SSM WWW A stone is dropped into a well. The splash...Ch. 17 - GO Hot chocolate effect. Tap a metal spoon inside...Ch. 17 - If the form of a sound wave traveling through air...Ch. 17 - Prob. 10PCh. 17 - SSM Diagnostic ultrasound of frequency 4.50 MHz is...Ch. 17 - The pressure in a traveling sound wave is given by...Ch. 17 - A sound wave of the form s = sm coskx t travels...Ch. 17 - Figure 17-32 shows the output from a pressure...Ch. 17 - GO A handclap on stage in an amphitheater sends...Ch. 17 - Two sound waves, from two different sources with...Ch. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - GO Figure 17-35 shows two isotropic point sources...Ch. 17 - Figure 17-36 shows four isotropic point sources of...Ch. 17 - SSM In Fig. 17-37, two speakers separated by...Ch. 17 - In Fig. 17-38, sound with a 40.0 cm wavelength...Ch. 17 - GO Figure 17-39 shows two point sources S1 and S2...Ch. 17 - Suppose that the sound level of a conversation is...Ch. 17 - A sound wave of frequency 300Hz has an intensity...Ch. 17 - Prob. 26PCh. 17 - SSM WWW A certain sound source is increased in...Ch. 17 - Two sounds differ in sound level by 1.00 dB. What...Ch. 17 - Prob. 29PCh. 17 - The source of a sound wave has a power of 1.00 W....Ch. 17 - GO When you crack a knuckle, you suddenly widen...Ch. 17 - Approximately a third of people with normal...Ch. 17 - Male Rana catesbeiana bullfrogs arc known for...Ch. 17 - GO Two atmospheric sound sources A and B emit...Ch. 17 - A point source emits 30.0 W of sound...Ch. 17 - Party hearing. As the number of people at a party...Ch. 17 - Prob. 37PCh. 17 - The water level in a vertical glass tube 1.00 m...Ch. 17 - Prob. 39PCh. 17 - Organ pipe A, with both ends open, has a...Ch. 17 - A violin siring 15.0 cm long and fixed at both...Ch. 17 - A sound wave in a fluid medium is reflected at a...Ch. 17 - SSM In Fig. 17-41, S is a small loudspeaker driven...Ch. 17 - The crest of a Parasaurolophus dinosaur skull is...Ch. 17 - In pipe A, the ratio of a particular harmonic...Ch. 17 - GO Pipe A. which is 1.20 m long and open at both...Ch. 17 - A well with vertical sides and water at the bottom...Ch. 17 - One of the harmonic frequencies of tube A with two...Ch. 17 - SSM A violin string 30.0 cm long with linear...Ch. 17 - Prob. 50PCh. 17 - The A string of a violin is a little too tightly...Ch. 17 - A tuning fork of unknown frequency makes 3.00...Ch. 17 - SSM Two identical piano wires have a fundamental...Ch. 17 - You have five tuning forks that oscillate at close...Ch. 17 - Prob. 55PCh. 17 - An ambulance with a siren emitting a whine at 1600...Ch. 17 - A state trooper chases a speeder along a straight...Ch. 17 - Prob. 58PCh. 17 - GO In Fig. 17-42, a French submarine and a U.S....Ch. 17 - A stationary motion detector sends sound waves of...Ch. 17 - GO A bat is flitting about in a cave, navigating...Ch. 17 - Figure 17-43 shows four tubes with lengths 1.0 m...Ch. 17 - ILWAn acoustic burglar alarm consists of a source...Ch. 17 - A stationary detector measures the frequency of a...Ch. 17 - GO A 2000 Hz siren and a civil defense official...Ch. 17 - GO Two trains are traveling toward each other at...Ch. 17 - SSM WWWA girl is sitting near the open window of a...Ch. 17 - Prob. 68PCh. 17 - SSMA jet plane passes over you at a height of 5000...Ch. 17 - A plane flies at 1.25 times the speed of sound....Ch. 17 - At a distance of 10 km, a 100 Hz horn, assumed to...Ch. 17 - A bullet is fired with a speed of 685 m/s. Find...Ch. 17 - Prob. 73PCh. 17 - The average density of Earths crust 10 km beneath...Ch. 17 - A certain loudspeaker system emits sound...Ch. 17 - Find the ratios greater to smaller of the a...Ch. 17 - Prob. 77PCh. 17 - A trumpet player on a moving railroad flatcar...Ch. 17 - GO In Fig. 17-46, sound of wavelength 0.850 m is...Ch. 17 - GO A detector initially moves at constant velocity...Ch. 17 - SSMa If two sound waves, one in air and one in...Ch. 17 - A continuous sinusoidal longitudinal wave is sent...Ch. 17 - SSMUltrasound, which consists of sound waves with...Ch. 17 - The speed of sound in a certain metal is vm. One...Ch. 17 - An avalanche of sand along some rare desert sand...Ch. 17 - A sound source moves along an x axis, between...Ch. 17 - SSMA siren emitting a sound of frequency 1000 Hz...Ch. 17 - Prob. 88PCh. 17 - Prob. 89PCh. 17 - Prob. 90PCh. 17 - Prob. 91PCh. 17 - You can estimate your distance from a lightning...Ch. 17 - SSMFigure 17-48 shows an air-filled, acoustic...Ch. 17 - Prob. 94PCh. 17 - SSMThe sound intensity is 0.0080 W/m2 at a...Ch. 17 - Four sound waves are to be sent through the same...Ch. 17 - Prob. 97PCh. 17 - A point source that is stationary on an x axis...Ch. 17 - You are standing at a distance D from an isotropic...Ch. 17 - Pipe A has only one open end; pipe B is four times...Ch. 17 - A pipe 0.60 m long and closed at one end is filled...Ch. 17 - A sound wave travels out uniformly in all...Ch. 17 - A police car is chasing a speeding Porsche 911....Ch. 17 - Suppose a spherical loudspeaker emits sound...Ch. 17 - In Fig. 17-35. S1 and S2 are two isotropic point...Ch. 17 - Prob. 106PCh. 17 - Kundts method for measuring the speed of sound. In...Ch. 17 - Prob. 108PCh. 17 - In Fig. 17-53, a point source S of sound waves...Ch. 17 - A person on a railroad car blows a trumpet note at...Ch. 17 - A listener at rest with respect to the air and the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An FM communication system has a sensitivity of 4 kHz/V. How much deviation (in Hz) does it produce with a sine wave input of 19.66 Vpeak at a frequency of 4.8 kHz?arrow_forwardAn ultrasound probe transmits a pulse of ultrasound of frequency, fo = 000 MHz. The reflected signal is found to have a frequency fr = 11.005 MHz. The speed of sound in tissue is 1450 ms-1 and the angle between the probe and the artery is 40°.arrow_forwardA point monopole in a free field produces a sound pressure level at Im of 110DB re 20µPa. What is the sound pressure level at 10m?arrow_forward
- Two speakers connected to the same frequency generator emit a sound with afrequency of 500 Hz. As a person walks around in the room, he finds areas wherethe sound becomes loud and clear and areas where it is more muffled. At one spotwhere the sound is a maximum, the student is 3.2 m from one speaker. What isthe closest possible distance he could be to the other speaker?arrow_forwardAn interface is formed between a block of aluminium (with an acoustic impedance of 1.8 x 107 kg m2 s') and a block of copper (with an acoustic impedance of 4.6 x 107 kg m-2 s-1). Longitudinal sound waves travelling through the aluminium are normally incident on the boundary, and are partially reflected. a) What is the ratio of the amplitude of the reflected wave to that of the incident wave? Number b) What is the ratio of the amplitude of the transmitted wave to that of the incident wave? Number c) What percentage of the incident power is transmitted? Number d) What percentage of the incident power is reflected? Number % Ouit P Sove Questiarrow_forwardA 50 cm long wire fixed at both ends vibrates with afundamental frequency fo when the tension T is 50 N. If thetension is increased to 60 N, the fundamental frequencyincreases by 5 Hz. Determine the mass of the wire and thefrequency fo.arrow_forward
- What frequency is received by a stationary mouse just before being dispatched by a hawk flying at it at 24.4 m/s and emitting a screech of frequency 3400 Hz? Assume room temperature air.arrow_forward(a) (i) State what is meant by the specific acoustic impedance of a medium. (ii) The density of a sample of bone is 1.8 gcm 3 and the speed of ultrasound in the bone is 4.1 x 10°ms-1. Calculate the specific acoustic impedance Z, of the sample of bone. Z3 = kgm-2s-1arrow_forwardThe acoustic impedance of water is Zwater = 1440000 kg/(m2 s), and that of bone is Zbone = 7800000 kg/(m2 s). What proportion of the energy of a sound wave propagating in water will be transmitted at the water-bone boundary?arrow_forward
- The acoustic impedance of water is Zwater = 1440000 kg/(m2 s), and that of bone is Zbone = 7800000 kg/(m2 s). What proportion of the energy of a sound wave propagating in water will be reflected at the water-bone boundary?arrow_forwardQ) A parallel beam of ultrasound waves of intensity (E), incident Perpendicular to muscle tissue with a thickness of (3.4 cm) (a) What is the percentage of the wave that is reflected at the boundary of muscle tissue and bone? (b) What is the percentage of the wave that passes through 3.4 cm of muscle tissue? Er E acoustic impedance Agglutination coefficient /kg.m2. s-1 /m-¹ bone muscular 3.4cm 6.4×106 130 muscular 1.7x106 23 bony O (a) 33% (b) 45% O (a) 45% (b) 33% O (a) 33% (b) 67% O (a) 67% (b) 33% O (a) 45% (b) 55% O (a) 55% (b) 45% fabric E:arrow_forward(a) Using the values for density and the speed of ultrasound shown, show that the acoustic impedance of fat tissue is indeed 1.34×106 kg/(m2 ·s) .(b) Calculate the intensity reflection coefficient of ultrasound when going from fat to muscle tissue.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University