Concept explainers
An adapted launcher uses a torsional spring about point O to help people with mobility impairments throw a Frisbee®. Just after the Frisbee® leaves the arm, the angular velocity of the throwing arm is 200 rad/s and its acceleration is 10 rad/s2; both are counterclockwise. The rotation point O is located 1 in. from the two sides. Assume that you can model the 2-lb throwing arm as a uniform rectangle. Just after the Frisbee® leaves the arm, determine (a) the moment about O caused by the spring, (b) the forces on the pin at O.
Fig. P16.86
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Additional Engineering Textbook Solutions
Machine Tool Practices (10th Edition)
Statics and Mechanics of Materials (5th Edition)
Thermodynamics: An Engineering Approach
Heat and Mass Transfer: Fundamentals and Applications
Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
- An automobile driver took a curve too fast. The car spun out of control about its center of gravity (CG) and slid off the road in a northeasterly direction. The friction of the skidding tires provided a 0.25 g linear deceleration. The car rotated at 100 rpm. When the car hit the tree head-on at 30 mph, it took 0.1 sec to come to rest. The force exerted by the 100-lb child on her seatbelt harness as a result of the acceleration just prior to impact is 875 lbf 618 lbf 657 lbf 725 lbfarrow_forwardQ. The upper and lower arms of Porter governor are 0.25 m each and are pivoted 30 mm from the axis of rotation. The radius of rotation Is 130 mm. The mass of the ball and sleeve are 3 kg and 38 kg respectively. Find the effort and power of the governor.arrow_forwardThe parallelogram linkage shown moves in the vertical plane with the uniform 9.3-kg bar EF attached to the plate at E by a pin which is welded both to the plate and to the bar. A torque (not shown) is applied to link AB through its lower pin to drive the links in a clockwise direction. When e reaches 51°, the links have an angular acceleration and an angular velocity of 7.0 rad/s² and 2.3 rad/s, respectively. For this instant calculate the magnitudes of the force F and torque M supported by the pin at E. Welded 1435 mm pin F 995 995 mm mm B D Horizontal Answers: F = i N M = i N•marrow_forward
- 5. Can you use Newton's third law to relate pairs of forces shown in different force diagrams? 6. Is there a relationship between the angular acceleration of the disk + ring system and the acceleration of the hanging weight? To decide, examine the accelerations that you labeled in your drawing of the equipment. 7. Solve your equations for the moment of inertia of the disk + ring system as a function of the mass of the hanging weight, the acceleration of the hanging weight, and the radius of the wheel. Start with the equation containing the quantity you want to know, the moment of inertia of the disk + ring system. Identify the unknowns in that equation and select equations for each of them from those you have collected. If those equations generate additional unknowns, search your collection for equations that contain them. Continue this process until all unknowns are accounted for. Now solve those equations for your target unknown. 8. For comparison with your experimental results,…arrow_forwardQ2: A 12 kg slender bar rotates about the pin at A. At the position shown it has an angular velocity of 5 rad /s. Determine ; a- angular acceleration of the bar. (- b-magnitude of the acceleration of the mass center. (! c-pin reactions at the position shown. (*^ m= 12 kg slender bar A 1.5 m 3 4 @= 5 rad /sarrow_forwardThe Top Spin Ride can be represented in two dimensions by the following mechanical system: T L The system consists in two rigid bars linked by a revolute joint. The first bar of mass M and length L rotates around a fixed support at one of its ends, placed at the origin O. It represents the counterweighted arm. The second bar of mass m and length I rotates at one of its ends around the free end of the first bar, it represents the passenger platform. The respective bars' masses are assumed to be distributed uniformly along their lengths. A torque T is applied to the first bar at the origin to represent the action of the motor on the counterweighted arms. The brakes between the counterweighted arms and the passenger platform are represented by a torsional damper with friction coefficient a. The state of the system is given by 0 and , which correspond respectively to the angles of the first and second bar with the vertical axis. a). Choose O as the reference point. Determine the potential…arrow_forward
- Four masses m1, m2, m3 and m4 are 10 kg, 20 kg, 30 kg and 40 kg respectively. The corresponding radii of rotation are 0.1 m, 0.15 m, 0.3 m and 0.35 m respectively and the angles between successive masses are 40°, 60° and 120°. Find the position and magnitude of the balance mass required, if its radius of rotation is 0.5 m.arrow_forwardFigure Q2 shows a spool with a mass of 20 kg and a radius of gyration ko = 0.16 m. The 15 kg block A is released from rest position. Apply the conservation of energy method to determine the distance that block A must fall for the spool to rotate at an angular velocity of 8 rad/s. (a) Apply the principle of work and energy to determine the tension in the cord when the block is in motion. (b) (b) What are the assumptions made in the analysis? 0.2 m A Figure Q2arrow_forward8. 2) Rods AB and BC are linked at Band have weights of 18 lb and 37 lb, respectively. The 8-lb collar C, which is connected to BC and the spring, slides freely along the smooth vertical guide. The lengths of the rods are 4 = 1.4 ft and 2 = 2.9 ft. If the system is released from rest when 0 = 0°, determine the magnitude of the angular velocity (in rad/s) of rod BC when 0 = 90°. The attached spring has spring constant k = 20 Ib/ft, and is unstretched when 0 = 0°. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g= 32.2 ft/s2. k CO Your Answer: Answerarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY