Concept explainers
Solve Prob. 16.69, assuming that the sphere is replaced by a uniform thin hoop of radius r and mass m.
16.69 A sphere of radius r and mass m is projected along a rough horizontal surface with the initial velocities indicated. If the final velocity of the sphere is to be zero, express, in terms of v0, r, and μk, (a) the required magnitude of ω0, (b) the time t1 required for the sphere to come to rest, (c) the distance the sphere will move before coming to rest.
Fig. P16.69
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Additional Engineering Textbook Solutions
Thermodynamics: An Engineering Approach
Manufacturing Engineering & Technology
Fundamentals Of Thermodynamics
Heat and Mass Transfer: Fundamentals and Applications
Mechanics of Materials, 7th Edition
Introduction to Heat Transfer
- P.2) When you go bowling, you throw the ball (a uniform sphere of mass m and radius r) so that when it is projected along the lane surface it initially has a linear velocity vo and slips along the surface. Once it touches the surface kinetic friction reduces the velocity of the ball, eventually leads the ball to roll without slip. When the coefficient of kinetie friction between the ball and the surface is 44, determine: (a) the time tro at which the ball will start rolling without slipping, and (b) the linear and angular velocities of the ball at time toll. Hint: v = vo + at w = wo + at 19arrow_forwardA bowler sends his ball down the lane with a forward velocity of 10 ft/s and backspin of 12 rad/s. His ball weighs 16 lbs and has a diameter of 10 in. Knowing that a bowling ball has more weight concentrated towards the center, we will estimate the mass moment of inertia as: I = mr². Starting from t, at the moment the ball hits the alley, and knowing the coefficient of friction is 0.10, determine: (a) The time t, when the ball starts to roll forward without sliding (b) The speed of the ball at this time (c) The distance the ball has traveled at this time 00 Voarrow_forwardTwo steel balls, each of mass m = 1.84 kg, are welded to a light rod of length L = 545 mm and negligible mass and are initially at rest on a smooth horizontal surface. The distance b = 111 mm. A horizontal force of magnitude F = 27 N is suddenly applied to the rod as shown. Determine (a) the magnitude of the instantaneous acceleration a of the mass center G and (b) the magnitude of the corresponding rate 0 at which the angular velocity of the assembly about G is changing with time. Answers: a= 0 = IN PI 771 m/s² rad/s²arrow_forward
- Two steel balls, each of mass m = 1.84 kg, are welded to a light rod of length L = 545 mm and negligible mass and are initially at rest on a smooth horizontal surface. The distance b = 111 mm. A horizontal force of magnitude F = 27 N is suddenly applied to the rod as shown. Determine (a) the magnitude of the instantaneous acceleration a of the mass center G and (b) the magnitude of the corresponding rate 0 at which the angular velocity of the assembly about G is changing with time. m Answers: a = 0= IN P 77 M m/s² rad/s²arrow_forwardTwo steel balls, each of mass m = 1.84 kg, are welded to a light rod of length L = 545 mm and negligible mass and are initially at rest on a smooth horizontal surface. The distance b= 111 mm. A horizontal force of magnitude F= 27 N is suddenly applied to the rod as shown. Determine (a) the magnitude of the instantaneous acceleration a of the mass center G and (b) the magnitude of the corresponding rate 0 at which the angular velocity of the assembly about G is changing with time. m Answers: a = O = IN 7. 77 M m/s² rad/s²arrow_forwardIn the system shown, a 150 N collar-pulley assembly slides on a horizontal shaft with coefficient of kinetic friction μk = 0.10 between the collar and the shaft, and is acted upon by a force P with a magnitude of P = 303.887 N at an angle θ = 35.38° as shown. Knowing that the assembly is initially at rest, what is the time when the velocity reaches to 3 m/s? what is the velocity of collar ? after 3 seconds? Also, at this instant, find the tension in the cord and the velocity of block A.arrow_forward
- PROBLEM 3 - In the system shown, a 150 N collar-pulley assembly slides on a horizontal shaft with coefficient of kinetic friction u = 0.10 between the collar and the shaft, and is acted upon by a force P with a magnitude of P 251.432 N at an angle 0 30.11° as shown. Knowing that the assembly is initially at rest, what is the time when the velocity reaches to 3 m/s? Also, at this instant, find the tension in the cord and the velocity of block A. Use g==9.81 m/s 32.2 ft/s %3D W-150 N WA 106. 54 N てarrow_forwardA sphere of radius r and mass m is projected along a rough horizontal surface with the initial velocities shown. If the final velocity of the sphere is to be zero, express (a) the required magnitude of w0 in terms of and r, (b) the time required for the sphere to come to rest in terms of v0 and the coefficient of kinetic friction μk.arrow_forwardQ16) A block of mass m, on a rough, horizontal surface is connected to a ball of mass m2 by a lightweight cord over a lightweight, frictionless pulley, as shown in Figure 14(a). A force of magnitude F at an angle e with the horizontal is applied to the block as shown. The coefficient of kinetic friction between the block and surface is g. Determine the magnitude of the acceleration of the two objects. Fig. 14 (a): The external force F applied as shown can cause the block to accelerate to the right.arrow_forward
- In the system shown, a 150 N collar-pulley assembly slides on a horizontal shaft with coefficient of kinetic friction uk =0.10 between the collar and the shaft, and is acted upon by a force P with a magnitude of P = 250N at an angle 0 = 30 as shown. Knowing that the assembly is initially at rest, what is the time when the velocity of collar B reaches to 3 m/s? Also, at this instant, find the tensile force in the cord and the velocity of block A.arrow_forward12.92 Two 2.6-lb collars A and B can slide without friction on a frame, con- sisting of the horizontal rod OE and the vertical rod CD, which is free to rotate about CD. The two collars are connected by a cord running over a pulley that is attached to the frame at O, and a stop prevents collar B from moving. The frame is rotating at the rate 0 = 12 rad/s and r = 0.6 ft when the stop is removed, allowing collar A to move out along rod OE. Neglecting friction and the mass of the frame, deter- mine, for the position r = 1.2 ft, (a) the transverse component of the velocity of collar A, (b) the tension in the cord and the acceleration of collar A relative to the rod OE. D B Fig. P12.92 A Earrow_forwardProblem 3.76 Letting d = 3 ft and L = 7 ft, determine the value of the tube's angular velocity o if, after release, the projectile exits the tube with a speed of 90 ft/s. %3D %3Darrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY