Concept explainers
A bowler projects an 8-in.-diameter ball weighing 12 lb along an alley with a forward velocity v0 of 15 ft/s and a backspin ω0 of 9 rad/s. Knowing that the coefficient of kinetic friction between the ball and the alley is 0.10, determine (a) the time t1 at which the ball will start rolling without sliding, (b) the speed of the ball at time t1, (c) the distance the ball will have traveled at time t1.
Fig. P16.71
Trending nowThis is a popular solution!
Chapter 16 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Additional Engineering Textbook Solutions
Automotive Technology: Principles, Diagnosis, and Service (5th Edition)
DeGarmo's Materials and Processes in Manufacturing
Introduction To Finite Element Analysis And Design
Manufacturing Engineering & Technology
EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
Degarmo's Materials And Processes In Manufacturing
- In the system shown, a 150 N collar-pulley assembly slides on a horizontal shaft with coefficient of kinetic friction uk =0.10 between the collar and the shaft, and is acted upon by a force P with a magnitude of P = 250N at an angle 0 = 30 as shown. Knowing that the assembly is initially at rest, what is the time when the velocity of collar B reaches to 3 m/s? Also, at this instant, find the tensile force in the cord and the velocity of block A.arrow_forwardBlock A of Fig.(3) weighs 100N and block B weighs 300N. The coefficient of static friction between the blocks is 0.5, and the coefficient of kinetic friction between block B and the plane is 0.25. Determine the max. value of (P) that may be applied without causing block A to slide on block B when block B is moving to the left. (The gravitational acceleration is 10 m/s?) P. AT00 24 300 Fig.(3) m.ax Good Luck Pt N ray 2-2 B.arrow_forwardTwo blocks having the weights and position shown, rest on a frame which rotates about its vertical axis at a constant speed. The coefficient of friction between the blocks and the frame is 0.02 neglecting the weight and friction of the pulley, at what speed in RPM will the blocks start to slide? What is the tension in the cord at this instant.?arrow_forward
- The arms of a Porter governor are 225 mm long. The upper and lower arms are pivoted to links of 35 mm and 45 mm respectively from the axis of rotation. Each ball has a mass of 4 kg and the sleeve mass is 35 kg. The force of friction on the sleeve of the mechanism is 44 N. Determine the range of speed of the governor for extreme radii of rotation of 115 mm and 145 mm.arrow_forwardThe flywheel (I = mk² ) shown has a radius of 20 in. a weight of 250 lbs, and a radius of gyration of 15 in. A 30-lb block A is attached to a wire that is wrapped around the flywheel, and the system is released from rest. Neglecting the effect of friction, determine (a) the acceleration of block A and (b) the speed of block A after it has moved 5 ft. Use Newton's second law.(Answers: a = 5.66 ft/s v¼ = 7.52 ft/s |)arrow_forwardA 50 Ib block A is attached to a wire that is wrapped around the shown flywheel of 30" radius and I = 12 ft-lb-s². The system is released from the rest. Neglect the effect of friction, determine (a) the acceleration of the block A, (b) the speed of the block A after it has moved 10 ft. Aarrow_forward
- A sphere of radius r and mass m has a linear velocity v0 directed to the left and no angular velocity as it is placed on a belt moving to the right with a constant velocity v1. If after first sliding on the belt the sphere is to have no linear velocity relative to the ground as it starts rolling on the belt without sliding, determine in terms of v1 and the coefficient of kinetic friction µk between the sphere and the belt (a) the required value of v0, (b) the time t1 at which the sphere will start rolling on the belt, (c) the distance the sphere will have moved relative to the ground at time t1.arrow_forwardThe double pulley shown in the figure has a mass of 3 kg and a radius of 100 mm rotation. Knowing that when the pulley is at rest, it is applied to the cable in B, a force P of magnitude equal to 24N, determine the speed of the center of the pulley after 1.5 s and the tensile force on cable C.arrow_forward3- To unload a bound stack of plywood from a truck, the driver first tilts the bed of the truck and then accelerates from rest. Knowing that the coefficients of friction between the bottom sheet of plywood and the bed are us = 0.40 and u = 0.30, determine (a) the smallest acceleration of the truck which will cause the stack of plywood to slide, (b) the acceleration of the truck which causes corner A of the stack to reach the end of the bed in 0.9 s. 40 20 00arrow_forward
- Boxes A and B are at rest on a conveyor belt that is initially at rest. The belt is suddenly started in an upward direction so that slipping occurs between the belt and the boxes, as shown in Figure Q1 (c). Knowing that the coefficients of kinetic friction between the belt and the boxes are (u)A = 0.30 and (uk)B = 0.32. determine the initial acceleration of each box. (c) 40 kg 50 kg 15° Figure Q1 (c)arrow_forwardA spherical bowling ball with mass m = 4.6 kg and radius R = 0.105 m is thrown down the lane with an initial speed of v = 9.5 m/s. The coefficient of static friction between the ball and the ground is 0.35 and the coefficient for kinetic friction is μ = 0.3. Once the ball begins to roll without slipping it moves with a constant velocity down the lane. 1) What is the magnitude of the angular acceleration of the bowling ball as it slides down the lane? 2) What is magnitude of the linear acceleration of the bowling ball as it slides down the lane? 3) How long does it take the bowling ball to begin rolling without slipping? 4) Once it begins to roll without slipping, what is the force of friction on the ball?arrow_forwardA 30-kg disk with a radius of 0.7 m is pushed against a spring (k=900N/m). At the instant show where the spring is deformed by 0.2 m, the disk is released from rest. kAx Assume that the disk will roll without sliding after release. The coefficient of non-sliding friction between the floor and the disk is 0.3. 1. Which of the following kinematic relationships relating the acceleration of the mass center of the disk a, and its angular acceleration a is correct? a. a, = 0.7a b. 1.4a, = a c. 0.7a, = a d. a,=1.4 ma ma, 2. Given the force diagram of the package, which of the following is the most ideally constructed diagram? lect U www B W(0.7) +0.2kg+ma(0.7)² 17 3. Which of the following equations summing of moments about A is correct and can be used to solve for the angular acceleration of the disk? 8 W(0.7)+0.2k(0.7) = Iga+ma(0.7)² 17 8 C W (0.7) +0.2k(0.7) = fg+ma(0.7) 17 15 0. 17W (0.7) +02k(0.7)-Ig+ma(0.7) 4. What is the total acceleration of the mass center of the disk? 5. What is the…arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY