
Concept explainers
(a)
Interpretation:The molecule out of
Concept Introduction:
Solid state has strong intermolecular force of attraction between particles whereas the gaseous particles have weakest intermolecular forces between particles. Due to intermolecular force of attraction between particles, different interconversions are possible between these three states like evaporation, condensation, sublimation, etc. These states have different intermolecular forces between substances. The intermolecular forces exist between different molecules and are mainly 4 types:
- London dispersion force
- Hydrogen bond
- Dipole-dipole bond
- Ion-dipole bond
The order of strength of forces can be shown as:
London dispersion force < dipole-dipole force < Ion-dipole force
(a)

Answer to Problem 16E
Explanation of Solution
The ion-dipole and dipole-dipole exist between dipoles and ions whereas hydrogen bonding exist between two electronegative elements whereas H atom acts as bridge. The London dispersion forces exist between two non-polar molecules and are the weakest forces.
(b)
Interpretation:The molecule out of
Concept Introduction:
Solid state has strong intermolecular force of attraction between particles whereas the gaseous particles have weakest intermolecular forces between particles. Due to intermolecular force of attraction between particles, different interconversions are possible between these three states like evaporation, condensation, sublimation, etc. These states have different intermolecular forces between substances. The intermolecular forces exist between different molecules and are mainly 4 types:
- London dispersion force
- Hydrogen bond
- Dipole-dipole bond
- Ion-dipole bond
The order of strength of forces can be shown as:
London dispersion force < dipole-dipole force < Ion-dipole force
(b)

Answer to Problem 16E
Explanation of Solution
The ion-dipole and dipole-dipole exist between dipoles and ions whereas hydrogen bonding exist between two electronegative elements whereas H atom acts as bridge. The London dispersion forces exist between two non-polar molecules and are the weakest forces. As the molar mass increases, the strength of London dispersion forces also increases. Both
In
(c)
Interpretation:The molecule out of
Concept Introduction:
Solid state has strong intermolecular force of attraction between particles whereas the gaseous particles have weakest intermolecular forces between particles. Due to intermolecular force of attraction between particles, different interconversions are possible between these three states like evaporation, condensation, sublimation, etc. These states have different intermolecular forces between substances. The intermolecular forces exist between different molecules and are mainly 4 types:
- London dispersion force
- Hydrogen bond
- Dipole-dipole bond
- Ion-dipole bond
The order of strength of forces can be shown as:
London dispersion force < dipole-dipole force < Ion-dipole force
(c)

Answer to Problem 16E
Explanation of Solution
The ion-dipole and dipole-dipole exist between dipoles and ions whereas hydrogen bonding exist between two electronegative elements whereas H atom acts as bridge. The London dispersion forces exist between two non-polar molecules and are the weakest forces. As the molar mass increases, the strength of London dispersion forces also increases. Both
Both
(d)
Interpretation:The molecule out of
Concept Introduction:
Solid state has strong intermolecular force of attraction between particles whereas the gaseous particles have weakest intermolecular forces between particles. Due to intermolecular force of attraction between particles, different interconversions are possible between these three states like evaporation, condensation, sublimation, etc. These states have different intermolecular forces between substances. The intermolecular forces exist between different molecules and are mainly 4 types:
- London dispersion force
- Hydrogen bond
- Dipole-dipole bond
- Ion-dipole bond
The order of strength of forces can be shown as:
London dispersion force < dipole-dipole force < Ion-dipole force
(d)

Answer to Problem 16E
Explanation of Solution
The ion-dipole and dipole-dipole exist between dipoles and ions whereas hydrogen bonding exist between two electronegative elements whereas H atom acts as bridge. The London dispersion forces exist between two non-polar molecules and are the weakest forces. As the molar mass increases, the strength of London dispersion forces also increases. Both
(e)
Interpretation:The molecule out of
Concept Introduction:
Solid state has strong intermolecular force of attraction between particles whereas the gaseous particles have weakest intermolecular forces between particles. Due to intermolecular force of attraction between particles, different interconversions are possible between these three states like evaporation, condensation, sublimation, etc. These states have different intermolecular forces between substances. The intermolecular forces exist between different molecules and are mainly 4 types:
- London dispersion force
- Hydrogen bond
- Dipole-dipole bond
- Ion-dipole bond
The order of strength of forces can be shown as:
London dispersion force < dipole-dipole force < Ion-dipole force
(e)

Answer to Problem 16E
Explanation of Solution
The ion-dipole and dipole-dipole exist between dipoles and ions whereas hydrogen bonding exist between two electronegative elements whereas H atom acts as bridge. The London dispersion forces exist between two non-polar molecules and are the weakest forces. As the molar mass increases, the strength of London dispersion forces also increases. Both
Want to see more full solutions like this?
Chapter 16 Solutions
Chemical Principles
- 3. Name this compound properly, including stereochemistry. H₂C H3C CH3 OH 4. Show the step(s) necessary to transform the compound on the left into the acid on the right. Bri CH2 5. Write in the product of this LiAlH4 Br H₂C OHarrow_forwardWhat are the major products of the following reaction? Please provide a detailed explanation and a drawing to show how the reaction proceeds.arrow_forwardWhat are the major products of the following enolate alkylation reaction? Please include a detailed explanation as well as a drawing as to how the reaction proceeds.arrow_forward
- A block of zinc has an initial temperature of 94.2 degrees celcius and is immererd in 105 g of water at 21.90 degrees celcius. At thermal equilibrium, the final temperature is 25.20 degrees celcius. What is the mass of the zinc block? Cs(Zn) = 0.390 J/gxdegrees celcius Cs(H2O) = 4.18 J/gx degrees celcusarrow_forwardPotential Energy (kJ) 1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. AH = -950 kJ AH = 575 kJ (i) Cl₂ (g) + Pt (s) 2C1 (g) + Pt (s) Ea = 1550 kJ (ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s) (iii) Cl (g) + CICO (g) → Cl₂CO (g) Ea = 2240 kJ Ea = 2350 kJ AH = -825 kJ 2600 2400 2200 2000 1800 1600 1400 1200 1000 a. Draw the potential energy diagram for the reaction. Label the data points for clarity. The potential energy of the reactants is 600 kJ 800 600 400 200 0 -200- -400 -600- -800- Reaction Progressarrow_forwardCan u help me figure out the reaction mechanisms for these, idk where to even startarrow_forward
- Hi, I need your help with the drawing, please. I have attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forwardHi, I need your help i dont know which one to draw please. I’ve attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forward5. Write the formation reaction of the following complex compounds from the following reactants: 6. AgNO₃ + K₂CrO₂ + NH₄OH → 7. HgNO₃ + excess KI → 8. Al(NO₃)₃ + excess NaOH →arrow_forward
- Indicate whether the product formed in the reaction exhibits tautomerism. If so, draw the structure of the tautomers. CO₂C2H5 + CH3-NH-NH,arrow_forwardDraw the major product of this reaction N-(cyclohex-1-en-1-yl)-1-(pyrrolidino) reacts with CH2=CHCHO, heat, H3O+arrow_forwardDraw the starting material that would be needed to make this product through an intramolecular Dieckmann reactionarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning





