Biology 2e
Biology 2e
2nd Edition
ISBN: 9781947172517
Author: Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher: OpenStax
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 15, Problem 1VCQ

Figure 15.11 A scientist splices a eukaryotic promoter in front of a bacterial gene and inserts the gene in a bacterial chromosome. Would you expect the bacteria to transcribe the gene?

Chapter 15, Problem 1VCQ, Figure 15.11 A scientist splices a eukaryotic promoter in front of a bacterial gene and inserts the

Expert Solution & Answer
Check Mark
Summary Introduction

To analyze:

Whether the bacterial gene having eukaryotic promoter gets transcribed or not.

Introduction:

Eukaryotic promoters are different from prokaryotic promoters so the bacteria would not transcribe the gene.

Explanation of Solution

In case of transcription of genes, i.e. formation of RNA (mostly m-RNA) from DNA, promoters play an essential role. Promoters are the specific DNA sequences present near the starting point of transcription of a particular gene. Promoters help in the binding of RNA polymerase and transcription machinery to the specific point in the gene to initiate the process of transcription. They are mainly located upstream of a gene, towards 5’ end of the anti-sense strand. As these are specific recognition sequences, eukaryotic promoters are different from prokaryotic promoters.

Prokaryotic promoters have three essential elements:-10 elements,-35 element and UP (upstream promoter) element.

Eukaryotic promoters mainly contain a TATA box of six nucleotides (consensus sequence is 5’ TATAAA 3’) located around-30 (with reference to initiation site of transcription +1), while prokaryotic promoters have its counterpart-10 elements or Pribnow box of six nucleotides (consensus sequence is 5’ TATAAT 3’) located at-10. Both these have A-T rich elements. Prokaryotes also have one more promoter sequence of six nucleotides at-35 which is (5’ TTGACA 3’) called as-35 elements. Pribnow box or-10 element is essential in prokaryotes for the initiation of transcription and-35 element helps in increasing the transcription rate.UP element is A-T rich sequence located between-40 to-60.

Other conserved sequences in eukaryotic promoters are CAAT box (GGCCAATCT) around-80 and GC-rich boxes (GGCG), and octamer boxes (ATTTGCAT) located further upstream.Basically, eukaryotic promoters are much more complex and larger in structure than the prokaryotic promoters.Sigma factor (s factor) of prokaryotic RNA polymerase holoenzyme recognizes and binds to the promoter interaction site to initiate transcription.

So, a bacterial gene having eukaryotic promoter would not transcribe because eukaryotic promoter has different recognition sites/consensus sequences than the required prokaryotic recognition sites. RNA polymerase, transcription factors and other proteins of host bacterial chromosome would not be able to identify the eukaryotic promoter sequences and transcription of the gene would not occur.

Conclusion

So, the bacteria would not transcribe the gene with the eukaryotic promoter as they are different from the prokaryotic promoters.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
calculate the questions showing the solution including variables,unit and equations all the questiosn below using the data.show solving and answer a) B1,   b) B2,   c) hybrid rate constant (1) d) hybrid rate constant (2) e) t1/2,dist t1/2,absorb f) t1/2,elim   k) apparent central compartment volume (V1,app) p) total AUC (using short cut method) apparent volume of distribution based on AUC (VAUC,app)  apparent clearance (CLapp)   absolute bioavailabilty of oral route ( AUCiv =116ml)
Please help me to draw this by hand. In as much detail as possible, hand draw a schematic diagram of the hypothalamic-pituitary-gonad (HPG) axis in the human female. Be sure to include all the relevant structures and hormones. You must define all abbreviations the first time you use them. Please include (and explain) the feedback loops.
Please refer below

Chapter 15 Solutions

Biology 2e

Knowledge Booster
Background pattern image
Biology
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax
Text book image
BIOLOGY:CONCEPTS+APPL.(LOOSELEAF)
Biology
ISBN:9781305967359
Author:STARR
Publisher:CENGAGE L
Text book image
Human Heredity: Principles and Issues (MindTap Co...
Biology
ISBN:9781305251052
Author:Michael Cummings
Publisher:Cengage Learning
Text book image
Concepts of Biology
Biology
ISBN:9781938168116
Author:Samantha Fowler, Rebecca Roush, James Wise
Publisher:OpenStax College
Text book image
Biology: The Dynamic Science (MindTap Course List)
Biology
ISBN:9781305389892
Author:Peter J. Russell, Paul E. Hertz, Beverly McMillan
Publisher:Cengage Learning
Text book image
Biology Today and Tomorrow without Physiology (Mi...
Biology
ISBN:9781305117396
Author:Cecie Starr, Christine Evers, Lisa Starr
Publisher:Cengage Learning
Bacterial Genomics and Metagenomics; Author: Quadram Institute;https://www.youtube.com/watch?v=_6IdVTAFXoU;License: Standard youtube license