Concept explainers
Interpretation:
A ideal gas is to be defined and the reason why there is no true ideal gas in nature is to be justified.
Concept introduction:
The concept of ideal gas is studied by kinetic gas theory.
Answer to Problem 64A
A gas is ideal if it follows all the
There is no ideal gas in nature because all gases follow ideal gas equation at low temperature and high pressure and deviates from ideal behavior at high temperature and low pressure.
Explanation of Solution
According to kinetic molecular theory, an ideal gas should follow:
- Volume occupied by a molecule should be negligible as compared to total volume of gas.
- There should be no attractive forces between the gas molecules.
So, a gas can behave ideally if above postulates are followed and these can be followed if temperature is high and pressure is low. These conditions will help the gas particles to remain at larger distance with no attractions.
And if the pressure is high and temperature is low then particles come closer and there exist a force of attraction between them.
Because a gas don't follow kinetic theory at all temperature and pressure, it is not ideal in nature.
All gases are real. They show ideal behavior at specific temperature and pressure range.
Chapter 13 Solutions
Chemistry: Matter and Change
Additional Science Textbook Solutions
Organic Chemistry (8th Edition)
Applications and Investigations in Earth Science (9th Edition)
Biology: Life on Earth (11th Edition)
Cosmic Perspective Fundamentals
Concepts of Genetics (12th Edition)
The Cosmic Perspective (8th Edition)
- 6. Consider the following exothermic reaction below. 2Cu2+(aq) +41 (aq)2Cul(s) + 12(aq) a. If Cul is added, there will be a shift left/shift right/no shift (circle one). b. If Cu2+ is added, there will be a shift left/shift right/no shift (circle one). c. If a solution of AgNO3 is added, there will be a shift left/shift right/no shift (circle one). d. If the solvent hexane (C6H14) is added, there will be a shift left/shift right/no shift (circle one). Hint: one of the reaction species is more soluble in hexane than in water. e. If the reaction is cooled, there will be a shift left/shift right/no shift (circle one). f. Which of the changes above will change the equilibrium constant, K?arrow_forwardShow work. don't give Aiarrow_forwardShow work with explanation needed. don't give Ai generated solutionarrow_forward
- Show work with explanation needed. Don't give Ai generated solutionarrow_forward7. Calculate the following for a 1.50 M Ca(OH)2 solution. a. The concentration of hydroxide, [OH-] b. The concentration of hydronium, [H3O+] c. The pOH d. The pHarrow_forwardA first order reaction is 46.0% complete at the end of 59.0 minutes. What is the value of k? What is the half-life for this reaction? HOW DO WE GET THERE? The integrated rate law will be used to determine the value of k. In [A] [A]。 = = -kt What is the value of [A] [A]。 when the reaction is 46.0% complete?arrow_forward
- 3. Provide the missing compounds or reagents. 1. H,NNH КОН 4 EN MN. 1. HBUCK = 8 хно Panely prowseful kanti-chuprccant fad, winddively, can lead to the crading of deduc din-willed, tica, The that chemooices in redimi Грин. " like (for alongan Ridovi MN نيا . 2. Cl -BuO 1. NUH 2.A A -BuOK THE CF,00,H Ex 5)arrow_forward2. Write a complete mechanism for the reaction shown below. NaOCH LOCH₁ O₂N NO2 CH₂OH, 20 °C O₂N NO2arrow_forward4. Propose a synthesis of the target molecules from the respective starting materials. a) b) LUCH C Br OHarrow_forward
- The following mechanism for the gas phase reaction of H2 and ICI that is consistent with the observed rate law is: step 1 step 2 slow: H2(g) +ICI(g) → HCl(g) + HI(g) fast: ICI(g) + HI(g) → HCl(g) + |2(g) (1) What is the equation for the overall reaction? Use the smallest integer coefficients possible. If a box is not needed, leave it blank. + → + (2) Which species acts as a catalyst? Enter formula. If none, leave box blank: (3) Which species acts as a reaction intermediate? Enter formula. If none, leave box blank: (4) Complete the rate law for the overall reaction that is consistent with this mechanism. (Use the form k[A][B]"..., where '1' is understood (so don't write it) for m, n etc.) Rate =arrow_forwardPlease correct answer and don't use hand rating and don't use Ai solutionarrow_forward1. For each of the following statements, indicate whether they are true of false. ⚫ the terms primary, secondary and tertiary have different meanings when applied to amines than they do when applied to alcohols. • a tertiary amine is one that is bonded to a tertiary carbon atom (one with three C atoms bonded to it). • simple five-membered heteroaromatic compounds (e.g. pyrrole) are typically more electron rich than benzene. ⚫ simple six-membered heteroaromatic compounds (e.g. pyridine) are typically more electron rich than benzene. • pyrrole is very weakly basic because protonation anywhere on the ring disrupts the aromaticity. • thiophene is more reactive than benzene toward electrophilic aromatic substitution. • pyridine is more reactive than nitrobenzene toward electrophilic aromatic substitution. • the lone pair on the nitrogen atom of pyridine is part of the pi system.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY