With the initial appearance of the feature we call “Now Solve This,” a short introduction is in order. The feature occurs several times in this and all ensuing chapters, each time providing a problem related to the discussion just presented. A “Hint” is then offered that may help you solve the problem. Here is the first problem:
- (a) If an organism has a diploid number of 16, how many chromatids are visible at the end of mitotic prophase?
- (b) How many chromosomes are moving to each pole during anaphase of mitosis?
(a)
To determine: The number of chromatids that are visible at the end of prophase stage of mitosis.
Introduction: Mitosis is a process of division in which two daughter cells produce, and each daughter cell has the same complement of chromosomes as the parent cell.
Explanation of Solution
Prophase is the first stage of mitosis. In this stage, chromatin fibers start to condense, and nuclear envelope disappears, and centrioles divide. As chromatin fibers condense, the thread-like structures, the chromosomes, become visible.
It becomes apparent near the end of prophase that each chromosome consists of two parts, which are called sister chromatids. For example, if an organism has diploid number of 16 chromosomes, 32 chromatids would be visible at the end of mitotic prophase.
(b)
To determine: The number of chromosomes that move towards the opposite poles during anaphase.
Introduction: Mitosis is divided into several stages: prophase, prometaphase, metaphase, anaphase, and telophase.
Explanation of Solution
In metaphase, the homologous chromosomes duplicate. Anaphase is the shortest stage of mitosis. The events critical to chromosome distribution occur during this stage. In this stage, sister chromatids of each chromosome disjoin from one other and are pulled towards opposite ends. This event is described as disjunction. If an organism has a diploid number of 16 chromosomes, 16 chromosomes will move towards the opposite poles during anaphase.
Want to see more full solutions like this?
Chapter 2 Solutions
Concepts of Genetics (12th Edition)
Additional Science Textbook Solutions
Microbiology: An Introduction
Organic Chemistry (8th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Campbell Biology (11th Edition)
Applications and Investigations in Earth Science (9th Edition)
- Hydrogen bonds play an important role in stabilizing and organizing biological macromolecules. Consider the four macromolecules discussed. Describe three examples where hydrogen bond formation affects the form or function of the macromolecule.arrow_forwardImagine you are a botanist. Below are characteristics of a never-before described plant species recently identified as part of the ‘All Taxa Biodiversity Inventory’ (ATBI). Field Notes: Specimen collected from shaded area along stream in South Cumberland State Park (Grundy County, TN). Laboratory Analysis: Body: Large leaves emerging from underground rhizome. Size: 63 cm Chromosomal Analysis: Plant body is diploid—chromosome number of 44. Lignin test: Positive Cuticle: Present Leaves: Present—large with branched veins. Underside has sori (containing haploid spores). Roots: Present—branch from the inside. Stem: Present—vascular tissue (xylem & phloem) present. Life History: Diploid sporophyte dominant generation. Haploid spores germinate into heart-shaped, haploid, gametophyte. Water required for fertilization; no seed is produced. Diploid zygote develops into sporophyte. Explain which domain, kingdom and phylum you believe this plant should be classified…arrow_forwardCUÁ Glycine A C C Newly formed molecule Glycine Arginine Proline Alanine A C C CC G GGAUUGGUGGGGC Structure X I mRNAarrow_forward
- Adaptations to a Changing Environment Why is it necessary for organisms to have the ability to adapt? Why is the current environment making it difficult for organisms like the monarch butterfly to adapt? Explain how organisms develop adaptations.arrow_forwardArtificial Selection: Explain how artificial selection is like natural selection and whether the experimental procedure shown in the video could be used to alter other traits. Why are quail eggs useful for this experiment on selection?arrow_forwardDon't give AI generated solution otherwise I will give you downwardarrow_forward
- Hello, Can tou please help me to develope the next topic (in a esquematic format) please?: Function and Benefits of Compound Microscopes Thank you in advance!arrow_forwardIdentify the AMA CPT assistant that you have chosen. Explain your interpretation of the AMA CPT assistant. Explain how this AMA CPT assistant will help you in the future.arrow_forwardwhat is the difference between drug education programs and drug prevention programsarrow_forward
- What is the formula of Evolution? Define each item.arrow_forwardDefine the following concepts from Genetic Algorithms: Mutation of an organism and mutation probabilityarrow_forwardFitness 6. The primary theory to explain the evolution of cooperation among relatives is Kin Selection. The graph below shows how Kin Selection theory can be used to explain cooperative displays in male wild turkeys. B When paired, subordinant males increase the reproductive success of their solo, dominant brothers. 0.9 C 0 Dominant Solo EVOLUTION Se, Box 13.2 © 2023 Oxford University Press rB rB-C Direct Indirect Fitness fitness fitness gain Subordinate 19 Fitness After A. H. Krakauer. 2005. Nature 434: 69-72 r = 0.42 Subordinant Dominant a) Use Hamilton's Rule to show how Kin Selection can support the evolution of cooperation in this system. Show the math. (4 b) Assume that the average relatedness among male turkeys in displaying pairs was instead r = 0.10. Could kin selection still explain the cooperative display behavior (show math)? In this case, what alternative explanation could you give for the behavior? (4 pts) 7. In vampire bats (pictured below), group members that have fed…arrow_forward
- Human Anatomy & Physiology (11th Edition)BiologyISBN:9780134580999Author:Elaine N. Marieb, Katja N. HoehnPublisher:PEARSONBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxAnatomy & PhysiologyBiologyISBN:9781259398629Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa StouterPublisher:Mcgraw Hill Education,
- Molecular Biology of the Cell (Sixth Edition)BiologyISBN:9780815344322Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter WalterPublisher:W. W. Norton & CompanyLaboratory Manual For Human Anatomy & PhysiologyBiologyISBN:9781260159363Author:Martin, Terry R., Prentice-craver, CynthiaPublisher:McGraw-Hill Publishing Co.Inquiry Into Life (16th Edition)BiologyISBN:9781260231700Author:Sylvia S. Mader, Michael WindelspechtPublisher:McGraw Hill Education