Concepts of Genetics (12th Edition)
12th Edition
ISBN: 9780134604718
Author: William S. Klug, Michael R. Cummings, Charlotte A. Spencer, Michael A. Palladino, Darrell Killian
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 30ESP
Assume that each gamete resulting from Problem 29 fuses, in fertilization, with a normal haploid gamete. What combinations will result? What percentage of zygotes will be diploid, containing one paternal and one maternal member of each chromosome pair?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Assume that the autotriploid cell in Figure has 3 n = 30 chromosomes. For each of the gametes produced by this cell, give the chromosome number of the zygote that would result if the gamete fused with a normal haploid gamete.
If there are 32 sister chromatieds in a normal somatic cell, what is the haploid number for that cell?
During metaphase I of meiosis, tetrads align along the metaphase plate independently of each other. Therefore, there is a random “shuffle” of maternal and paternal chromosomes in the resulting gametes.The following diagram demonstrates how this works in a diploid cell with four chromosomes . Because there are two pairs of chromosomes and each pair can align in one of two ways during metaphase I, the number of possible variations in the gametes produced is , or .For an organism that is , there are three pairs of chromosomes, so the number of possible variations in the gametes produced due to independent assortment in metaphase I is , or .
In an organism with a haploid number of , how many possible combinations of maternal and paternal chromosomes can occur in its gametes?
Select one:
a. 72=49
b. 27=128
c.17=1
d. 214=16 384
Chapter 2 Solutions
Concepts of Genetics (12th Edition)
Ch. 2 - With the initial appearance of the feature we call...Ch. 2 - An organism has a diploid number of 16 in a...Ch. 2 - Examine Figure 2.12, which shows oogenesis in...Ch. 2 - Over a period of two years, a man in his early 20s...Ch. 2 - Over a period of two years, a man in his early 20s...Ch. 2 - Over a period of two years, a man in his early 20s...Ch. 2 - In this chapter, we focused on how chromosomes are...Ch. 2 - Review the Chapter Concepts list on page 14. All...Ch. 2 - What role do the following cellular components...Ch. 2 - Discuss the concepts of homologous chromosomes,...
Ch. 2 - If two chromosomes of a species are the same...Ch. 2 - Describe the events that characterize each stage...Ch. 2 - How are chromosomes named on the basis of their...Ch. 2 - Contrast telophase in plant and animal mitosis.Ch. 2 - Describe the phases of the cell cycle and the...Ch. 2 - Define and discuss these terms: (a) synapsis, (b)...Ch. 2 - Contrast the genetic content and the origin of...Ch. 2 - Given the end results of the two types of...Ch. 2 - Contrast spermatogenesis and oogenesis. What is...Ch. 2 - Explain why meiosis leads to significant genetic...Ch. 2 - A diploid cell contains three pairs of homologous...Ch. 2 - Considering Problem 15, predict the number of...Ch. 2 - During oogenesis in an animal species with a...Ch. 2 - What is the probability that, in an organism with...Ch. 2 - The nuclear DNA content of a single sperm cell in...Ch. 2 - Describe the role of meiosis in the life cycle of...Ch. 2 - Contrast the chromatin fiber with the mitotic...Ch. 2 - Describe the folded-fiber model of the mitotic...Ch. 2 - Prob. 23PDQCh. 2 - If one follows 50 primary oocytes in an animal...Ch. 2 - In mitosis, what chromatid combination(s) will be...Ch. 2 - During meiosis I, assuming no crossing over, what...Ch. 2 - Are there any possible combinations present during...Ch. 2 - Draw all possible combinations of chromatids...Ch. 2 - Assume that during meiosis I none of the C...Ch. 2 - Assume that each gamete resulting from Problem 29...Ch. 2 - A species of cereal rye (Secale cereale) has a...Ch. 2 - An interesting procedure has been applied for...Ch. 2 - Assume that you were examining a first polar body...Ch. 2 - Kuliev and Verlinsky (2004) state that there was a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- During metaphase I of meiosis, tetrads align along the metaphase plate independently of each other. Therefore, there is a random “shuffle” of maternal and paternal chromosomes in the resulting gametes.The following diagram demonstrates how this works in a diploid cell with four chromosomes (2n=4) . Because there are two pairs of chromosomes and each pair can align in one of two ways during metaphase I, the number of possible variations in the gametes produced is 22 or 4.For an organism that is , there are three pairs of chromosomes, so the number of possible variations in the gametes produced due to independent assortment in metaphase I is 23 or 8. In an organism with a haploid number of 7, how many possible combinations of maternal and paternal chromosomes can occur in its gametes? a. 72=49 b. 27=128 c.17=1 d. 214=16 384arrow_forwardDuring metaphase I of meiosis, tetrads align along the metaphase plate independently of each other. Therefore, there is a random “shuffle” of maternal and paternal chromosomes in the resulting gametes.The following diagram demonstrates how this works in a diploid cell with four chromosomes (2n=4) . Because there are two pairs of chromosomes and each pair can align in one of two ways during metaphase I, the number of possible variations in the gametes produced is 22 or 4.For an organism that is , there are three pairs of chromosomes, so the number of possible variations in the gametes produced due to independent assortment in metaphase I is 23 or 8. In an organism with a haploid number of 2n=6 , how many possible combinations of maternal and paternal chromosomes can occur in its gametes? a. 72=49 b. 27=128 c.17=1 d. 214=16 384arrow_forwardIn a zygote that begins with a complement of two homologous chromosomes pairs, A and a, and B and b: a. What chromosome compliments would you find in each somatic cells during growth? b. What combinations chromosomes would you expect to find in the gametes if the individual becomes an adult?arrow_forward
- 1) The daughter cells that result from Meiosis 1 are already haploid and unique a) Which even of Meiosis 1 results in the creation of Haploid cells? That is, why are momologous pairs of chromosomes absent in Meiosis 1 daughter cells? 2) The daughter cells are Haploid/Diploid (chose 1) because homologous pairs Are/Are Not ( chose 1) present in the same cell. The chromosomes in each daughter cells are Duplicate/Unduplicated (chose one) Please be briefarrow_forwardA diploid organism produces four gametes from one parent cell through the process of meiosis. Two gametes are found to have 7 chromosomes and two gametes are found to have 5 chromosomes. A) Is this the expected number of chromosomes that would be found in each gamete following a normal cycle of meiosis? If yes, explain why. If no, explain why not and describe how the gamete situation described above occurred. B) Determine the number of homologous chromosome pairs that the original parent cell contained, before meiosis began. Explain how you determined this value.arrow_forwardHow does the role of meiosis in gamete production differ between organisms with a diploid-dominant life cycle and organisms with an alternation of generations life cycle?arrow_forward
- Meiosis is characterized by the pairing of homologouschromosomes during prophase I. In many species, an elaboratestructure called the synaptonemal complex forms betweenhomologues. During this pairing, homologues may exchangechromosomal material at sites called chiasmata. In meiosis I, thehomologues separate from each other, reducing the chromosomenumber to the haploid state (thus the reductive division). It isfollowed by a second division without replication, during whichsister chromatids become separated. The result of meiosis I and IIis four haploid cells. If sister chromatids separated at the first division, would meiosis still work?arrow_forwardA cell that has a diploid number of 24 goes through meiosis. How many chromosomes would be in each cell after Meiosis II is completed. Would these cells be haploid or diploid? How many cells would be expected at the end of Meiosis II. Explain.arrow_forwardA diploid (2n) trihybrid individual with the genotype EeFfGg can make eight genetically different gametes. Loci E/e and F/f are on chromosome 1 and locus G/g is on chromosome 2. Explain how a gamete containing the alleles e, f and g may be produced by meiosis. Refer specifically to meiotic events occurring during Prophase I, Metaphase I, Anaphase I and Anaphase II. (NB: remember to refer to the organism above).arrow_forward
- If the amount (mass) of DNA in a diploid cell during G1 phase prior to meiosis I is 8 pg (picograms), how much DNA would be present in a daughter cell immediately following: A) meiosis I? B) meiosis II? (for your information, this cell will function as a gamete) HINT: Go through the process of meiosis one step at a time. DNA replication would double the amount of DNA in the cell, cell division divides the DNA into two daughter cells.arrow_forwardConsider a diploid cell that has 2 n = 4 chromosomes: one pair of metacentric chromosomes and one pair of acrocentric chromosomes. Suppose that this cell undergoes nondisjunction, giving rise to an autotriploid cell (3 n). The triploid cell then undergoes meiosis. Draw the different types of gametes that could result from meiosis in the triploid cell, showing the chromosomes present in each type. To distinguish between the different metacentric and acrocentric chromosomes, use a different color to draw each metacentric chromosome; similarly, use a different color to draw each acrocentric chromosome.arrow_forwardConsider a diploid cell that has 2 n = 4 chromosomes: one pair of metacentric chromosomes and one pair of acrocentric chromosomes. Suppose that this cell undergoes nondisjunction, giving rise to an autotriploid cell (3 n). The triploid cell then undergoes meiosis. Draw the different types of gametes that could result from meiosis in the triploid cell, showing the chromosomes present in each type. To distinguish between the different metacentric and acrocentricchromosomes, use a different color to draw each metacentric chromosome; similarly, use a different color to draw each acrocentric chromosome.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningHuman Physiology: From Cells to Systems (MindTap ...BiologyISBN:9781285866932Author:Lauralee SherwoodPublisher:Cengage LearningBiology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage Learning
Biology (MindTap Course List)
Biology
ISBN:9781337392938
Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
Publisher:Cengage Learning
Human Physiology: From Cells to Systems (MindTap ...
Biology
ISBN:9781285866932
Author:Lauralee Sherwood
Publisher:Cengage Learning
Biology Today and Tomorrow without Physiology (Mi...
Biology
ISBN:9781305117396
Author:Cecie Starr, Christine Evers, Lisa Starr
Publisher:Cengage Learning
The Plant Kingdom: Characteristics and Classification | Educational Videos for Kids; Author: Happy Learning English;https://www.youtube.com/watch?v=IYxfz1PSfZ0;License: Standard Youtube License