Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 37P
To determine
(a)
The average velocity of flow.
To determine
(b)
Whether flow is subcritical or supercritical.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the operating principle of variable-area flowmeters (rotameters)? How do they compare to other types of flowmeters with respect to cost, head loss, and reliability?
Water is being pumped from a reservoir to the top of a hill, where it is discharged, as shown in Fig. 20-21. Thepump, which is 70 percent efficient, is rated at 150 kW. Find the flow rate at which water is being dischargedfrom the pipe. Neglect minor losses.
For a hydroelectric plant, a hydraulic turbine-generator is installed at the site below the free surface. The turbine drives a generator for electricity. The
= 100kW. The shaft power
elevation difference between the two free surfaces is h=20m. The power input from the fluid to the turbine is is W
fluid
output from the turbine is W = 80kW.
sh
(2)Calculate the mass flow rate in of the fluid.
Turbine)
O A. 510 kg/s
B. 0.510 kg/s
O C. 10.2 kg/s
W₁ud
O D.5.1 kg/s
ff
Wsh
Generator
Welec
Chapter 13 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 13 - What is normal depth? Explain how it is...Ch. 13 - Prob. 2CPCh. 13 - Prob. 3CPCh. 13 - Prob. 4CPCh. 13 - What is the driving force for flow in an open...Ch. 13 - How does uniform flow differ from nonuniform flow...Ch. 13 - Prob. 7CPCh. 13 - Prob. 8CPCh. 13 - Prob. 9CPCh. 13 - Prob. 10CP
Ch. 13 - Prob. 11PCh. 13 - Prob. 12PCh. 13 - Prob. 13PCh. 13 - Prob. 14PCh. 13 - Prob. 15EPCh. 13 - Prob. 16PCh. 13 - Water at 10°C flows in a 3-rn-diameter circular...Ch. 13 - Prob. 18PCh. 13 - Water at 20°C flows in a partially full...Ch. 13 - Prob. 20CPCh. 13 - Prob. 21CPCh. 13 - Prob. 22CPCh. 13 - Prob. 23CPCh. 13 - Prob. 24CPCh. 13 - Prob. 25CPCh. 13 - Prob. 26CPCh. 13 - Consider steady supercritical flow of water...Ch. 13 - During steady and uniform flow through an open...Ch. 13 - How is the friction slope defined? Under what...Ch. 13 - Prob. 30PCh. 13 - Prob. 31PCh. 13 - Prob. 32EPCh. 13 - Prob. 33EPCh. 13 - Prob. 34PCh. 13 - Prob. 35PCh. 13 - Prob. 36PCh. 13 - Prob. 37PCh. 13 - Prob. 38PCh. 13 - Prob. 39PCh. 13 - Prob. 40CPCh. 13 - Prob. 41CPCh. 13 - Which is the best hydraulic cross section for an...Ch. 13 - Prob. 43CPCh. 13 - Prob. 44CPCh. 13 - Prob. 45CPCh. 13 - Prob. 46CPCh. 13 - Prob. 47PCh. 13 - Water flows uniformly half-full in a 2-m-diameter...Ch. 13 - Prob. 49PCh. 13 - A 3-ft-diameter semicircular channel made of...Ch. 13 - Prob. 51PCh. 13 - Prob. 52PCh. 13 - Prob. 53PCh. 13 - Prob. 54PCh. 13 - Prob. 55PCh. 13 - Prob. 56PCh. 13 - Water is to be transported n a cast iron...Ch. 13 - Prob. 58PCh. 13 - Prob. 59PCh. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - Prob. 64EPCh. 13 - Prob. 65EPCh. 13 - Prob. 66PCh. 13 - Repeat Prob. 13-60 for a weedy excavated earth...Ch. 13 - How does gradually varied flow (GVF) differ from...Ch. 13 - How does nonuniform or varied flow differ from...Ch. 13 - Prob. 70CPCh. 13 - Consider steady flow of water; an upward-sloped...Ch. 13 - Is it possible for subcritical flow to undergo a...Ch. 13 - Why is the hydraulic jump sometimes used to...Ch. 13 - Consider steady flow of water in a horizontal...Ch. 13 - Consider steady flow of water in a downward-sloped...Ch. 13 - Prob. 76CPCh. 13 - Prob. 77CPCh. 13 - Water is flowing in a 90° V-shaped cast iron...Ch. 13 - Prob. 79PCh. 13 - Consider the flow of water through a l2-ft-wde...Ch. 13 - Prob. 81PCh. 13 - Water discharging into a 9-m-wide rectangular...Ch. 13 - Prob. 83PCh. 13 - Prob. 84PCh. 13 - Prob. 85EPCh. 13 - Water flowing in a wide horizontal channel at a...Ch. 13 - During a hydraulic jump in a W'ide chanrel. the...Ch. 13 - Prob. 93CPCh. 13 - Prob. 96CPCh. 13 - Prob. 97CPCh. 13 - Prob. 98CPCh. 13 - Prob. 99PCh. 13 - Prob. 100PCh. 13 - Prob. 101CPCh. 13 - Consider uniform water flow in a wide rectangular...Ch. 13 - Consider the uniform flow of water in a wide...Ch. 13 - Prob. 105PCh. 13 - Prob. 106EPCh. 13 - Prob. 107PCh. 13 - Prob. 108PCh. 13 - Water flows over a 2-m-high sharp-crested...Ch. 13 - Prob. 110EPCh. 13 - Prob. 111EPCh. 13 - Prob. 112PCh. 13 - Prob. 114PCh. 13 - Repeat Prob. 13-111 for an upstream flow depth of...Ch. 13 - Prob. 116PCh. 13 - Prob. 117PCh. 13 - Repeat Prob. 13-114 for an upstream flow depth of...Ch. 13 - Consider uniform water flow in a wide channel made...Ch. 13 - Prob. 120PCh. 13 - Prob. 121PCh. 13 - Water flows in a canal at an average velocity of 4...Ch. 13 - Prob. 123PCh. 13 - A trapczoda1 channel with brick lining has a...Ch. 13 - Prob. 127PCh. 13 - A rectangular channel with a bottom width of 7 m...Ch. 13 - Prob. 129PCh. 13 - Prob. 131PCh. 13 - Prob. 132PCh. 13 - Consider o identical channels, one rectangular of...Ch. 13 - Prob. 134PCh. 13 - The flow rate of water in a 6-m-ide rectangular...Ch. 13 - Prob. 136EPCh. 13 - Prob. 137EPCh. 13 - Consider two identical 15-ft-wide rectangular...Ch. 13 - Prob. 140PCh. 13 - Prob. 141PCh. 13 - A sluice gate with free outflow is used to control...Ch. 13 - Prob. 143PCh. 13 - Prob. 144PCh. 13 - Repeat Prob. 13-142 for a velocity of 3.2 ms after...Ch. 13 - Water is discharged from a 5-rn-deep lake into a...Ch. 13 - Prob. 147PCh. 13 - Prob. 148PCh. 13 - Prob. 149PCh. 13 - Prob. 150PCh. 13 - Prob. 151PCh. 13 - Prob. 152PCh. 13 - Prob. 153PCh. 13 - Water f1ows in a rectangular open channel of width...Ch. 13 - Prob. 155PCh. 13 - Prob. 156PCh. 13 - Prob. 157PCh. 13 - Prob. 158PCh. 13 - Prob. 159PCh. 13 - Prob. 160PCh. 13 - Prob. 161PCh. 13 - Prob. 162PCh. 13 - Prob. 163PCh. 13 - Prob. 164PCh. 13 - Prob. 165PCh. 13 - Prob. 166PCh. 13 - Consider water flow in the range of 10 to 15 m3/s...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A horizontal concrete pipe (material roughness = 1.3 mm) with diameter of 5 cm andlength of 300 m is used to transport acetic acid. The density and dynamic viscosity ofthe acetic acid is 1049 kg/m3and 0.001155 Pa.s. If the flow rate required for thetransportation is 30 litre per minute: Determine the required pump power to overcome the head loss using Moody chartand Colebrook-White equation; Determine the required pump power to overcome the head loss using Altshul’scorrelation as shown in the equation below; Compare the difference of pumping power between answers obtained in Q5(a) andQ5(b) and discuss the validity/accuracy for Altshul’s correlation.arrow_forwardGlycerin flows through a 1.3 cm diameter at 0.5m/s. Determine the length of entrance region, le?arrow_forward6. Hot water flows through a horizontal steelpipe with diameter (0.25 m) the watervelocity is 5 m/s. The properties of water arep=300 kg/m3 p=3x10-2 kg/m: s. TheReynolds number isO 12000O 12500O 11500O 13500arrow_forward
- Fixed wings with classification of 120ㅇ as illustratedis being sprayed at a flow rate of 15 m/s toThe sprayed water is 0.45 kg/s. Seek the power to action on the wingsarrow_forwardA 500m pipeline of diameter 15 cm connects the two tanks having difference of 15m in their water levels, as shoAn in the figure. Determine the discharge through the pipe. In crder to increase the discharge by 25%, another pipaline is connected from the midde of the original pipeline. Determine its diameter, if triction factor is 0.01. Neglect minor kosses. 15m 200marrow_forwardThe water surface in reservoir B is 12m higher than the surface of reservoir C. A 40-cm diameter, 0.7km long iron-cast pipe carries water at 20°C from B to C. Determine discharge for this pipe? Friction factor for iron-cast pipe, f-0.018. Ke-0.5 and Kd=1.0, where: Ke - entrance coefficient; Kd- discharge coefficient. O A. 0.232m3/sec O B. 360L/sec OC.0.360m3/sec O D.0.336m3/secarrow_forward
- What is the formula of Nusselt number for laminat flowarrow_forwardThe rate of flow of water through a cylindrical tube that has an inner radius of 1.2 cm is 2791 cm3 in 88s at 293 K. Determine if the flow laminar or turbulent.arrow_forwardplzzzz help me with this one plzzz Water (viscosity of 0.001 kg/m.s and density of 1000 kg/m3 ) is to be pumped through 50 m of pipe from lower reservoir to a higher reservoir at a rate of 0.2 m3/s. If the pipe is cast iron of diameter 12 cm and the pump efficient is =0.44%, the major head loss inside the pipe is ¼ of the velocity head what horsepower pump is needed? Hint: consider the abrupt expansion only as a minor loss.arrow_forward
- Water (viscosity of 0.001 kg/m.s and density of 1000 kg/m ) is to be pumped through 50 m of pipe from lower reservoir to a higher reservoir at a rate of 0.2 m /s. If the pipe is cast iron of diameter 12 cm and the pump efficient is =0.67%, the major head loss inside the pipe is 4 of the velocity head 3 what horsepower pump is needed? Hint: consider the abrupt expansion only as a minor loss. 32 m L= 50 m Pumparrow_forwardHead loss in turbulent flow in a pipe (a) varies directly as velocity (b) varies inversely as square of velocity (c) varies approximately as square of velocity (d) varies inversely as velocityarrow_forwardThe velocity profile for a laminar flow of water through a circular pipe of 20 cm radius is given as . The local velocity of water at a radius of 15 cm, for a mean flow velocity of 10 m/s is Answer Choices: a. 12.95 m/s b. 16.85 m/s c. 11.75 m/s d. 10.25 m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License