
Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Question
Chapter 13, Problem 143P
To determine
The fraction of the
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Problem (17): water flowing in an open channel of a rectangular cross-section with width (b) transitions from a
mild slope to a steep slope (i.e., from subcritical to supercritical flow) with normal water depths of (y₁) and
(y2), respectively.
Given the values of y₁ [m], y₂ [m], and b [m], calculate the discharge in the channel (Q) in [Lit/s].
Givens:
y1 = 4.112 m
y2 =
0.387 m
b = 0.942 m
Answers:
( 1 ) 1880.186 lit/s
( 2 ) 4042.945 lit/s
( 3 ) 2553.11 lit/s
( 4 ) 3130.448 lit/s
Problem (14): A pump is being used to lift water from an underground
tank through a pipe of diameter (d) at discharge (Q). The total head
loss until the pump entrance can be calculated as (h₁ = K[V²/2g]), h
where (V) is the flow velocity in the pipe. The elevation difference
between the pump and tank surface is (h).
Given the values of h [cm], d [cm], and K [-], calculate the maximum
discharge Q [Lit/s] beyond which cavitation would take place at the
pump entrance. Assume Turbulent flow conditions.
Givens:
h = 120.31 cm
d = 14.455 cm
K = 8.976
Q
Answers:
(1) 94.917 lit/s
(2) 49.048 lit/s
( 3 ) 80.722 lit/s
68.588 lit/s
4
Problem (13): A pump is being used to lift water from the bottom
tank to the top tank in a galvanized iron pipe at a discharge (Q).
The length and diameter of the pipe section from the bottom tank
to the pump are (L₁) and (d₁), respectively. The length and
diameter of the pipe section from the pump to the top tank are
(L2) and (d2), respectively.
Given the values of Q [L/s], L₁ [m], d₁ [m], L₂ [m], d₂ [m],
calculate total head loss due to friction (i.e., major loss) in the
pipe (hmajor-loss) in [cm].
Givens:
L₁,d₁
Pump
L₂,d2
오
0.533 lit/s
L1 =
6920.729 m
d1 =
1.065 m
L2 =
70.946 m
d2
0.072 m
Answers:
(1)
3.069 cm
(2) 3.914 cm
( 3 ) 2.519 cm
( 4 ) 1.855 cm
TABLE 8.1
Equivalent Roughness for New Pipes
Pipe
Riveted steel
Concrete
Wood stave
Cast iron
Galvanized iron
Equivalent Roughness, &
Feet
Millimeters
0.003-0.03 0.9-9.0
0.001-0.01 0.3-3.0
0.0006-0.003 0.18-0.9
0.00085
0.26
0.0005
0.15
0.045
0.000005
0.0015
0.0 (smooth) 0.0 (smooth)
Commercial steel or wrought iron 0.00015
Drawn…
Chapter 13 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 13 - What is normal depth? Explain how it is...Ch. 13 - Prob. 2CPCh. 13 - Prob. 3CPCh. 13 - Prob. 4CPCh. 13 - What is the driving force for flow in an open...Ch. 13 - How does uniform flow differ from nonuniform flow...Ch. 13 - Prob. 7CPCh. 13 - Prob. 8CPCh. 13 - Prob. 9CPCh. 13 - Prob. 10CP
Ch. 13 - Prob. 11PCh. 13 - Prob. 12PCh. 13 - Prob. 13PCh. 13 - Prob. 14PCh. 13 - Prob. 15EPCh. 13 - Prob. 16PCh. 13 - Water at 10°C flows in a 3-rn-diameter circular...Ch. 13 - Prob. 18PCh. 13 - Water at 20°C flows in a partially full...Ch. 13 - Prob. 20CPCh. 13 - Prob. 21CPCh. 13 - Prob. 22CPCh. 13 - Prob. 23CPCh. 13 - Prob. 24CPCh. 13 - Prob. 25CPCh. 13 - Prob. 26CPCh. 13 - Consider steady supercritical flow of water...Ch. 13 - During steady and uniform flow through an open...Ch. 13 - How is the friction slope defined? Under what...Ch. 13 - Prob. 30PCh. 13 - Prob. 31PCh. 13 - Prob. 32EPCh. 13 - Prob. 33EPCh. 13 - Prob. 34PCh. 13 - Prob. 35PCh. 13 - Prob. 36PCh. 13 - Prob. 37PCh. 13 - Prob. 38PCh. 13 - Prob. 39PCh. 13 - Prob. 40CPCh. 13 - Prob. 41CPCh. 13 - Which is the best hydraulic cross section for an...Ch. 13 - Prob. 43CPCh. 13 - Prob. 44CPCh. 13 - Prob. 45CPCh. 13 - Prob. 46CPCh. 13 - Prob. 47PCh. 13 - Water flows uniformly half-full in a 2-m-diameter...Ch. 13 - Prob. 49PCh. 13 - A 3-ft-diameter semicircular channel made of...Ch. 13 - Prob. 51PCh. 13 - Prob. 52PCh. 13 - Prob. 53PCh. 13 - Prob. 54PCh. 13 - Prob. 55PCh. 13 - Prob. 56PCh. 13 - Water is to be transported n a cast iron...Ch. 13 - Prob. 58PCh. 13 - Prob. 59PCh. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - Prob. 64EPCh. 13 - Prob. 65EPCh. 13 - Prob. 66PCh. 13 - Repeat Prob. 13-60 for a weedy excavated earth...Ch. 13 - How does gradually varied flow (GVF) differ from...Ch. 13 - How does nonuniform or varied flow differ from...Ch. 13 - Prob. 70CPCh. 13 - Consider steady flow of water; an upward-sloped...Ch. 13 - Is it possible for subcritical flow to undergo a...Ch. 13 - Why is the hydraulic jump sometimes used to...Ch. 13 - Consider steady flow of water in a horizontal...Ch. 13 - Consider steady flow of water in a downward-sloped...Ch. 13 - Prob. 76CPCh. 13 - Prob. 77CPCh. 13 - Water is flowing in a 90° V-shaped cast iron...Ch. 13 - Prob. 79PCh. 13 - Consider the flow of water through a l2-ft-wde...Ch. 13 - Prob. 81PCh. 13 - Water discharging into a 9-m-wide rectangular...Ch. 13 - Prob. 83PCh. 13 - Prob. 84PCh. 13 - Prob. 85EPCh. 13 - Water flowing in a wide horizontal channel at a...Ch. 13 - During a hydraulic jump in a W'ide chanrel. the...Ch. 13 - Prob. 93CPCh. 13 - Prob. 96CPCh. 13 - Prob. 97CPCh. 13 - Prob. 98CPCh. 13 - Prob. 99PCh. 13 - Prob. 100PCh. 13 - Prob. 101CPCh. 13 - Consider uniform water flow in a wide rectangular...Ch. 13 - Consider the uniform flow of water in a wide...Ch. 13 - Prob. 105PCh. 13 - Prob. 106EPCh. 13 - Prob. 107PCh. 13 - Prob. 108PCh. 13 - Water flows over a 2-m-high sharp-crested...Ch. 13 - Prob. 110EPCh. 13 - Prob. 111EPCh. 13 - Prob. 112PCh. 13 - Prob. 114PCh. 13 - Repeat Prob. 13-111 for an upstream flow depth of...Ch. 13 - Prob. 116PCh. 13 - Prob. 117PCh. 13 - Repeat Prob. 13-114 for an upstream flow depth of...Ch. 13 - Consider uniform water flow in a wide channel made...Ch. 13 - Prob. 120PCh. 13 - Prob. 121PCh. 13 - Water flows in a canal at an average velocity of 4...Ch. 13 - Prob. 123PCh. 13 - A trapczoda1 channel with brick lining has a...Ch. 13 - Prob. 127PCh. 13 - A rectangular channel with a bottom width of 7 m...Ch. 13 - Prob. 129PCh. 13 - Prob. 131PCh. 13 - Prob. 132PCh. 13 - Consider o identical channels, one rectangular of...Ch. 13 - Prob. 134PCh. 13 - The flow rate of water in a 6-m-ide rectangular...Ch. 13 - Prob. 136EPCh. 13 - Prob. 137EPCh. 13 - Consider two identical 15-ft-wide rectangular...Ch. 13 - Prob. 140PCh. 13 - Prob. 141PCh. 13 - A sluice gate with free outflow is used to control...Ch. 13 - Prob. 143PCh. 13 - Prob. 144PCh. 13 - Repeat Prob. 13-142 for a velocity of 3.2 ms after...Ch. 13 - Water is discharged from a 5-rn-deep lake into a...Ch. 13 - Prob. 147PCh. 13 - Prob. 148PCh. 13 - Prob. 149PCh. 13 - Prob. 150PCh. 13 - Prob. 151PCh. 13 - Prob. 152PCh. 13 - Prob. 153PCh. 13 - Water f1ows in a rectangular open channel of width...Ch. 13 - Prob. 155PCh. 13 - Prob. 156PCh. 13 - Prob. 157PCh. 13 - Prob. 158PCh. 13 - Prob. 159PCh. 13 - Prob. 160PCh. 13 - Prob. 161PCh. 13 - Prob. 162PCh. 13 - Prob. 163PCh. 13 - Prob. 164PCh. 13 - Prob. 165PCh. 13 - Prob. 166PCh. 13 - Consider water flow in the range of 10 to 15 m3/s...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The flow rate is 12.275 Liters/s and the diameter is 6.266 cm.arrow_forwardAn experimental setup is being built to study the flow in a large water main (i.e., a large pipe). The water main is expected to convey a discharge (Qp). The experimental tube will be built at a length scale of 1/20 of the actual water main. After building the experimental setup, the pressure drop per unit length in the model tube (APm/Lm) is measured. Problem (20): Given the value of APm/Lm [kPa/m], and assuming pressure coefficient similitude, calculate the drop in the pressure per unit length of the water main (APP/Lp) in [Pa/m]. Givens: AP M/L m = 590.637 kPa/m meen Answers: ( 1 ) 59.369 Pa/m ( 2 ) 73.83 Pa/m (3) 95.443 Pa/m ( 4 ) 44.444 Pa/m *******arrow_forwardFind the reaction force in y if Ain = 0.169 m^2, Aout = 0.143 m^2, p_in = 0.552 atm, Q = 0.367 m^3/s, α = 31.72 degrees. The pipe is flat on the ground so do not factor in weight of the pipe and fluid.arrow_forward
- Find the reaction force in x if Ain = 0.301 m^2, Aout = 0.177 m^2, p_in = 1.338 atm, Q = 0.669 m^3/s, and α = 37.183 degreesarrow_forwardProblem 5: Three-Force Equilibrium A structural connection at point O is in equilibrium under the action of three forces. • • . Member A applies a force of 9 kN vertically upward along the y-axis. Member B applies an unknown force F at the angle shown. Member C applies an unknown force T along its length at an angle shown. Determine the magnitudes of forces F and T required for equilibrium, assuming 0 = 90° y 9 kN Aarrow_forwardProblem 19: Determine the force in members HG, HE, and DE of the truss, and state if the members are in tension or compression. 4 ft K J I H G B C D E F -3 ft -3 ft 3 ft 3 ft 3 ft- 1500 lb 1500 lb 1500 lb 1500 lb 1500 lbarrow_forward
- Problem 14: Determine the reactions at the pin A, and the tension in cord. Neglect the thickness of the beam. F1=26kN F2 13 12 80° -2m 3marrow_forwardProblem 22: Determine the force in members GF, FC, and CD of the bridge truss and state if the members are in tension or compression. F 15 ft B D -40 ft 40 ft -40 ft 40 ft- 5 k 10 k 15 k 30 ft Earrow_forwardProblem 20: Determine the force in members BC, HC, and HG. After the truss is sectioned use a single equation of equilibrium for the calculation of each force. State if the members are in tension or compression. 5 kN 4 kN 4 kN 3 kN 2 kN B D E F 3 m -5 m- -5 m- 5 m 5 m-arrow_forward
- An experimental setup is being built to study the flow in a large water main (i.e., a large pipe). The water main is expected to convey a discharge (Qp). The experimental tube will be built at a length scale of 1/20 of the actual water main. After building the experimental setup, the pressure drop per unit length in the model tube (APm/Lm) is measured. Problem (19): Given the value of Qp [m³/s], and assuming Reynolds number similitude between the water main and experimental tube, calculate the flow rate in the model tube (Qm) in [lit/s]. = 30.015 m^3/sarrow_forwardProblem 11: The lamp has a weight of 15 lb and is supported by the six cords connected together as shown. Determine the tension in each cord and the angle 0 for equilibrium. Cord BC is horizontal. E 30° B 60° Aarrow_forwardProblem 10: If the bucket weighs 50 lb, determine the tension developed in each of the wires. B $30° 5 E D 130°arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License