Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 116P
To determine
The percent reduction in the flow rate.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question
: A stream bed has a rectangular cross section 5 meters wide and a slope of
0.0002 m/m. The flow rate in the stream is 8.75 m³/s. A dam is built across the stream, causing
the water surface to rise to 2.5 meters just upstream of the dam, as shown below. Assume n =
0.015.
y = yn
2.5 m
a. Find the normal depth, yn, corresponding to this flow rate and channel geometry. You do
not need to solve the equation by hand. To get full credit, show your equation with only
one unknown.
b. Find the critical depth, yc.
c. The yn is found to be 1.8 m by solving the equation numerically. Identify the water
surface profile upstream of the dam. Explain your answer for full credit.
3.In one section of the irrigation canal, the narrowing of 1.5 times the width upstream (as
shown in the figure below). If the uniform channel cross section is rectangular with the
downstream width (b2) = 4.5 m, the velocity (V1) and depth (y1) of the upstream flow are
measured to be 0.2 m/s and 4.0 m, determine the energy loss (hf ) due to channel narrowing
if the downstream flow depth is assumed to be the same as the upstream flow depth !
b2
bị
V1
2.Water flows through a rectangular channel with a width b = 2 m and a height (Pw) = 1 m, the flow rate ranges from Qmin = 0.02 m^3/s and Qmax = 0.60 m^3/s. This flow rate is measured using
Rectangular sharp-crested weir
Triangular sharp-crested with = 90^o
Broad-crested weir
Plot onto the graph Q = Q(H) for each type of weir and give your analysis which type of weir is most appropriate to apply
Chapter 13 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 13 - What is normal depth? Explain how it is...Ch. 13 - Prob. 2CPCh. 13 - Prob. 3CPCh. 13 - Prob. 4CPCh. 13 - What is the driving force for flow in an open...Ch. 13 - How does uniform flow differ from nonuniform flow...Ch. 13 - Prob. 7CPCh. 13 - Prob. 8CPCh. 13 - Prob. 9CPCh. 13 - Prob. 10CP
Ch. 13 - Prob. 11PCh. 13 - Prob. 12PCh. 13 - Prob. 13PCh. 13 - Prob. 14PCh. 13 - Prob. 15EPCh. 13 - Prob. 16PCh. 13 - Water at 10°C flows in a 3-rn-diameter circular...Ch. 13 - Prob. 18PCh. 13 - Water at 20°C flows in a partially full...Ch. 13 - Prob. 20CPCh. 13 - Prob. 21CPCh. 13 - Prob. 22CPCh. 13 - Prob. 23CPCh. 13 - Prob. 24CPCh. 13 - Prob. 25CPCh. 13 - Prob. 26CPCh. 13 - Consider steady supercritical flow of water...Ch. 13 - During steady and uniform flow through an open...Ch. 13 - How is the friction slope defined? Under what...Ch. 13 - Prob. 30PCh. 13 - Prob. 31PCh. 13 - Prob. 32EPCh. 13 - Prob. 33EPCh. 13 - Prob. 34PCh. 13 - Prob. 35PCh. 13 - Prob. 36PCh. 13 - Prob. 37PCh. 13 - Prob. 38PCh. 13 - Prob. 39PCh. 13 - Prob. 40CPCh. 13 - Prob. 41CPCh. 13 - Which is the best hydraulic cross section for an...Ch. 13 - Prob. 43CPCh. 13 - Prob. 44CPCh. 13 - Prob. 45CPCh. 13 - Prob. 46CPCh. 13 - Prob. 47PCh. 13 - Water flows uniformly half-full in a 2-m-diameter...Ch. 13 - Prob. 49PCh. 13 - A 3-ft-diameter semicircular channel made of...Ch. 13 - Prob. 51PCh. 13 - Prob. 52PCh. 13 - Prob. 53PCh. 13 - Prob. 54PCh. 13 - Prob. 55PCh. 13 - Prob. 56PCh. 13 - Water is to be transported n a cast iron...Ch. 13 - Prob. 58PCh. 13 - Prob. 59PCh. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - Prob. 64EPCh. 13 - Prob. 65EPCh. 13 - Prob. 66PCh. 13 - Repeat Prob. 13-60 for a weedy excavated earth...Ch. 13 - How does gradually varied flow (GVF) differ from...Ch. 13 - How does nonuniform or varied flow differ from...Ch. 13 - Prob. 70CPCh. 13 - Consider steady flow of water; an upward-sloped...Ch. 13 - Is it possible for subcritical flow to undergo a...Ch. 13 - Why is the hydraulic jump sometimes used to...Ch. 13 - Consider steady flow of water in a horizontal...Ch. 13 - Consider steady flow of water in a downward-sloped...Ch. 13 - Prob. 76CPCh. 13 - Prob. 77CPCh. 13 - Water is flowing in a 90° V-shaped cast iron...Ch. 13 - Prob. 79PCh. 13 - Consider the flow of water through a l2-ft-wde...Ch. 13 - Prob. 81PCh. 13 - Water discharging into a 9-m-wide rectangular...Ch. 13 - Prob. 83PCh. 13 - Prob. 84PCh. 13 - Prob. 85EPCh. 13 - Water flowing in a wide horizontal channel at a...Ch. 13 - During a hydraulic jump in a W'ide chanrel. the...Ch. 13 - Prob. 93CPCh. 13 - Prob. 96CPCh. 13 - Prob. 97CPCh. 13 - Prob. 98CPCh. 13 - Prob. 99PCh. 13 - Prob. 100PCh. 13 - Prob. 101CPCh. 13 - Consider uniform water flow in a wide rectangular...Ch. 13 - Consider the uniform flow of water in a wide...Ch. 13 - Prob. 105PCh. 13 - Prob. 106EPCh. 13 - Prob. 107PCh. 13 - Prob. 108PCh. 13 - Water flows over a 2-m-high sharp-crested...Ch. 13 - Prob. 110EPCh. 13 - Prob. 111EPCh. 13 - Prob. 112PCh. 13 - Prob. 114PCh. 13 - Repeat Prob. 13-111 for an upstream flow depth of...Ch. 13 - Prob. 116PCh. 13 - Prob. 117PCh. 13 - Repeat Prob. 13-114 for an upstream flow depth of...Ch. 13 - Consider uniform water flow in a wide channel made...Ch. 13 - Prob. 120PCh. 13 - Prob. 121PCh. 13 - Water flows in a canal at an average velocity of 4...Ch. 13 - Prob. 123PCh. 13 - A trapczoda1 channel with brick lining has a...Ch. 13 - Prob. 127PCh. 13 - A rectangular channel with a bottom width of 7 m...Ch. 13 - Prob. 129PCh. 13 - Prob. 131PCh. 13 - Prob. 132PCh. 13 - Consider o identical channels, one rectangular of...Ch. 13 - Prob. 134PCh. 13 - The flow rate of water in a 6-m-ide rectangular...Ch. 13 - Prob. 136EPCh. 13 - Prob. 137EPCh. 13 - Consider two identical 15-ft-wide rectangular...Ch. 13 - Prob. 140PCh. 13 - Prob. 141PCh. 13 - A sluice gate with free outflow is used to control...Ch. 13 - Prob. 143PCh. 13 - Prob. 144PCh. 13 - Repeat Prob. 13-142 for a velocity of 3.2 ms after...Ch. 13 - Water is discharged from a 5-rn-deep lake into a...Ch. 13 - Prob. 147PCh. 13 - Prob. 148PCh. 13 - Prob. 149PCh. 13 - Prob. 150PCh. 13 - Prob. 151PCh. 13 - Prob. 152PCh. 13 - Prob. 153PCh. 13 - Water f1ows in a rectangular open channel of width...Ch. 13 - Prob. 155PCh. 13 - Prob. 156PCh. 13 - Prob. 157PCh. 13 - Prob. 158PCh. 13 - Prob. 159PCh. 13 - Prob. 160PCh. 13 - Prob. 161PCh. 13 - Prob. 162PCh. 13 - Prob. 163PCh. 13 - Prob. 164PCh. 13 - Prob. 165PCh. 13 - Prob. 166PCh. 13 - Consider water flow in the range of 10 to 15 m3/s...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 7.5 m -2.0 m 6.0 m h where b = weir width (m) 2 g = gravitational acceleration (m/s) h = height of water above the weir edge (m) 2.0 m 1.0 m wide weir water flows out through this opening The surge tank pictured (shown with clear sides for illustration purposes) is used to even out variable flows. During periods of high flow, excess water is diverted to the surge tank where it flows out more slowly over the weir. The volumetric flow over the weir is V = 0.011 * b* g¹/2h³/2 Assuming no excess flow is currently being diverted to the surge tank, determine the time required for the water level in the tank to become 6.25 m if the initial height is 7.5 marrow_forward4. The discharge from a 150 mm diameter orifice under a head of 3.05m and coefficient of discharge, C = 0.60 flows into a rectangular channel and over a rectangular suppressed weir. The channel is 1.83m wide and the weir has height, P = 1,50m and length, L = 0.31m. Determine the depth of water in the channel. Use Francis formula and neglect velocity of approach.arrow_forwardA submerged sharp crested weir 0.81 m high stands clear across a channel having vertical sides and width of 3.15 m. The depth of water in the channel of approach is 1.26 m, and 10.5 m downstream from the weir the depth of water is 0.93 m. Determine the discharge in litres per minute. Assume Cd1 = 0.58 and Cd2 = 0.80.arrow_forward
- A stream bed has a rectangular cross section 5 meters wide and a slope of 0.0002 m/m. The flow rate in the stream is 8.75 m³/s. A dam is built across the stream, causing the water surface to rise to 2.5 meters just upstream of the dam, as shown below. Assume n = 0.015. y≈yn 2.5 m 1. Find the normal depth, yn, corresponding to this flow rate and channel geometry. You do not need to solve the equation by hand. To get full credit, show your equation with only one unknown. (10 pts) 2. Find the critical depth, yc. (10 pts) 3. The yn is found to be 1.8 m by solving the equation numerically. Identify the water surface profile upstream of the dam. Explain your answer for full credit. (10 pts)arrow_forwardAn irrigation channel is to carry a discharge of 14 cumec with a velocity of 0.9 m/s and bed slope of 1 in 2500. The side slopes are 1 to 1. Find the depth and bottom width. The values of Chezy" C for this channel for different values of hydraulic radius R are as tabulated below. Hydraulic radius R 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 Chezy's C 34 35 37 38 39 40 41 41arrow_forward4. Find the width, in meters, of the channel at the back of a suppressed weir using the following data: H= 28.5cm d= 2.485m Q = 0.84m/s Consider velocity of approach.arrow_forward
- A reservoir has an outlet through a rectangular suppressed weir with a crest length of 1m. If its horizontal sectional area is constant at 1120 m?, how long will it take to lower the reservoir level from Elev. 5.00m to Elev. 4.80m if the crest is at Elev. 4.50m? Use the Francis Formula. O 81 s 321 s 501 s O 11 sarrow_forwardI need help correcting this problem (step by step for what is wrong).arrow_forwardWater flows steadily along a horizontal open channel of uniform width, over a broad-crested weir. The channel bed upstream from the weir (to the left) is d metres above the channel bed downstream from the weir (to the right), as shown in the figure below. The volume flow rate per unit width is Q = 6 m? s-1, and upstream the depth of the water is h1 = 3 m. Take the magnitude of the acceleration due to gravity as g = 10 ms 2. hi D p. h2 U2 (a) Find the upstream speed u1, and show that the flow is subcritical there. (b) Find the specific energy E (in m) for the flow upstream. (c) By applying Bernoulli's equation along a suitable streamline, show that the depth h2 in the downstream section of the channel satisfies the equation 5h – (16 + 5d)h+9 = 0.arrow_forward
- An overflow masonry dam is to be constructed across a stream. The stream is estimated to have a maximum flood discharge of 850 m3/s when the elevation of the water surface at the dam site is 345m. Six sluice gates each 2.4m x 1.8m wide (C= 0.75) are to be constructed in the dam with their sill at elevation 342m. The main overflow weir for which C = 1.45 will be 60 m long with a crest elevation of 360m. An Auxiliary weir 180m long with a crest elevation of 361m will operate during the floods. For this weir, C = 1.85. With all sluice gates open and when the discharge is 850m3/s, neglecting velocity of approach, a. Determine the discharge of the auxiliary weir. b. Determine the discharge of the main weir. c. Determine the discharge of the sluice gates.arrow_forwardI need the answer as soon as possiblearrow_forwardA reservoir discharges through a sluice 0.915 m wide by 1.22 m deep. The top of the opening is 0.61 m below the water level in the reservoir and the downstream water level is below the bottom of the opening. Calculate (a) the discharge through the opening if Cg = 0.60 and (b) percentage error if the opening is treated as a small orifice. %3Darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license