Fluid Mechanics Fundamentals And Applications
Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Videos

Question
Book Icon
Chapter 13, Problem 144P
To determine

The flow rate of water through the gate per meter width.

The flow depth y1 and y2.

The energy dissipation ratio of the jump.

Expert Solution & Answer
Check Mark

Answer to Problem 144P

The flow rate of water through the gate per meter width is 12m3/s.

The flow depth y1 and y2 are 9.6m and 1.969m.

The energy dissipation ratio of the jump is 0.012.

Explanation of Solution

Given information:

Water is flowing through a sluice gate, the velocity of water before reaching the gate is 1.25m/s, the velocity of water after the jump is 4m/s, the flow depth at (3) is 3m.

The flow is considered per meter width so b=1m.

The figure below shows the flow.

  Fluid Mechanics Fundamentals And Applications, Chapter 13, Problem 144P

  Figure-(1)

Write the expression for the cross-sectional area at (3).

  Ac,3=by3  ...... (I)

Here, the width is b, the flow depth at (3) is y3.

Write the expression for the cross-sectional area at (3).

  V˙=V3Ac,3  ...... (II)

Here, the velocity at section (3) is V3 and area at section (3) is Ac,3.

Write the expression for the conservation of mass.

  V1y1=V3y3y1=V3V1y3  ...... (III)

Here, the velocity at section (3) is V3, the velocity at section

Write the expression for the Froude number at section (3).

  Fr,3=V3gy3  ...... (IV)

Here, the acceleration due to gravity is g.

Write the expression for the flow depth.

  y2=0.5y3(1+1+8Fr32)  ...... (V)

Write the expression for the conservation of mass.

  V2y2=V3y3V2=V3y3y2 (VI)

The flow depth at section (2) is y2.

Write the expression for the Froude number at section (2).

  Fr,2=V2gy2  ...... (VII)

Write the expression for the head loss during jumping.

  hL=y2y3+V22V322g  ...... (VIII)

Here, the velocity at section (2) is V2 and the velocity at section (3) is V3.

Write the expression for the specific energy before the jump.

  Es2=y2+V222g  ...... (IX)

Write the expression for the dissipation ratio.

  Ds=hLEs2....... (X)

Calculation:

Substitute 1m for b and 3m for y3 in Equation (I).

  Ac3=1m×3m=3m2

Substitute 4m/s for V3, 3m2 for Ac3 in Equation (II).

  V˙=4m/s×3m2=12m3/s

Substitute 4m/s for V3, 1.25m/s for V1 in Equation (III).

  y1=4m/s1.25m/s(3m)=3.2(3m)=9.6m

Substitute 4m/s for V3

  9.81m/s2 for g and 3m for y3 in Equation (IV).

  Fr3=4m/s 9.81m/ s 2 ×3m=4m/s5.425m/s=0.7373

Substitute 3m for y3

  0.7373 for Fr,3 in Equation (V).

  y2=0.5(3m)(1+ 1+8 ( 0.7373 ) 2 )=1.5m(1.3127)=1.969m

Substitute 3m for y3, 1.969m for y2 and 4m/s for V3 in Equation (VI).

  V2=3m1.969m(4m/s)=1.5236(4m/s)=6.094m/s

Substitute 6.094m/s for V2, 9.81m/s2 for g and 1.969m for y2 in Equation (VII).

  Fr,2=6.094m/s ( 9.81 m/s 2 )( 1.969m )=6.094m/s4.39498m/s=1.387

Here Froude number is greater than 1 thus the flow before jump is super critical.

Substitute 1.969m for y2, 3m for y3

  6.094m/s for V2, 4m/s for V3, 9.81m/s2 for g in Equation (VIII).

  hL=1.969m3m+ ( 6.9094m/s )2 ( 4m/s )22( 9.81m/ s 2 )=1.969m3m+1.6177m=0.0463m

Substitute 1.9639m for y2, 6.094m/s for V2 and 9.81m/s2 for g in Equation (IX).

  Es2=1.9639m+ ( 6.094m/s )22×( 9.81m/ s 2 )=1.9639m+1.892m=3.862m

Substitute 0.0463m for hL and 3.862m for Es,2 in Equation (X).

  Ds=0.0463m3.862m=0.012m

Conclusion:

The flow rate of water through the gate per meter width is 12m3/s.

The flow depth y1 and y2 are 9.6m and 1.969m.

The energy dissipation ratio of the jump is 0.012.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A steam turbine operates at steady state with inlet conditions of P1 = 5 bar, T1 = 320°C. Steam leaves the turbine at a pressure of 1 bar. There is no significant heat transfer between the turbine and its surroundings, and kinetic and potential energy changes between inlet and exit are negligible. If the isentropic turbine efficiency is 75%, determine the work developed per unit mass of steam flowing through the turbine, in kJ/kg
Homework#5
Member AB has the angular velocity wAB = 2.5 rad/s and angular acceleration a AB = 9 rad/s². (Figure 1) Determine the magnitude of the velocity of point C at the instant shown. Determine the direction of the velocity of point C at the instant shown. Determine the magnitude of the acceleration of point C at the instant shown. Determine the direction of the acceleration of point C at the instant shown. A 300 mm WAB α AB B 500 mm 0=60° y 200 mm

Chapter 13 Solutions

Fluid Mechanics Fundamentals And Applications

Ch. 13 - Prob. 11PCh. 13 - Prob. 12PCh. 13 - Prob. 13PCh. 13 - Prob. 14PCh. 13 - Prob. 15EPCh. 13 - Prob. 16PCh. 13 - Water at 10°C flows in a 3-rn-diameter circular...Ch. 13 - Prob. 18PCh. 13 - Water at 20°C flows in a partially full...Ch. 13 - Prob. 20CPCh. 13 - Prob. 21CPCh. 13 - Prob. 22CPCh. 13 - Prob. 23CPCh. 13 - Prob. 24CPCh. 13 - Prob. 25CPCh. 13 - Prob. 26CPCh. 13 - Consider steady supercritical flow of water...Ch. 13 - During steady and uniform flow through an open...Ch. 13 - How is the friction slope defined? Under what...Ch. 13 - Prob. 30PCh. 13 - Prob. 31PCh. 13 - Prob. 32EPCh. 13 - Prob. 33EPCh. 13 - Prob. 34PCh. 13 - Prob. 35PCh. 13 - Prob. 36PCh. 13 - Prob. 37PCh. 13 - Prob. 38PCh. 13 - Prob. 39PCh. 13 - Prob. 40CPCh. 13 - Prob. 41CPCh. 13 - Which is the best hydraulic cross section for an...Ch. 13 - Prob. 43CPCh. 13 - Prob. 44CPCh. 13 - Prob. 45CPCh. 13 - Prob. 46CPCh. 13 - Prob. 47PCh. 13 - Water flows uniformly half-full in a 2-m-diameter...Ch. 13 - Prob. 49PCh. 13 - A 3-ft-diameter semicircular channel made of...Ch. 13 - Prob. 51PCh. 13 - Prob. 52PCh. 13 - Prob. 53PCh. 13 - Prob. 54PCh. 13 - Prob. 55PCh. 13 - Prob. 56PCh. 13 - Water is to be transported n a cast iron...Ch. 13 - Prob. 58PCh. 13 - Prob. 59PCh. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - Prob. 64EPCh. 13 - Prob. 65EPCh. 13 - Prob. 66PCh. 13 - Repeat Prob. 13-60 for a weedy excavated earth...Ch. 13 - How does gradually varied flow (GVF) differ from...Ch. 13 - How does nonuniform or varied flow differ from...Ch. 13 - Prob. 70CPCh. 13 - Consider steady flow of water; an upward-sloped...Ch. 13 - Is it possible for subcritical flow to undergo a...Ch. 13 - Why is the hydraulic jump sometimes used to...Ch. 13 - Consider steady flow of water in a horizontal...Ch. 13 - Consider steady flow of water in a downward-sloped...Ch. 13 - Prob. 76CPCh. 13 - Prob. 77CPCh. 13 - Water is flowing in a 90° V-shaped cast iron...Ch. 13 - Prob. 79PCh. 13 - Consider the flow of water through a l2-ft-wde...Ch. 13 - Prob. 81PCh. 13 - Water discharging into a 9-m-wide rectangular...Ch. 13 - Prob. 83PCh. 13 - Prob. 84PCh. 13 - Prob. 85EPCh. 13 - Water flowing in a wide horizontal channel at a...Ch. 13 - During a hydraulic jump in a W'ide chanrel. the...Ch. 13 - Prob. 93CPCh. 13 - Prob. 96CPCh. 13 - Prob. 97CPCh. 13 - Prob. 98CPCh. 13 - Prob. 99PCh. 13 - Prob. 100PCh. 13 - Prob. 101CPCh. 13 - Consider uniform water flow in a wide rectangular...Ch. 13 - Consider the uniform flow of water in a wide...Ch. 13 - Prob. 105PCh. 13 - Prob. 106EPCh. 13 - Prob. 107PCh. 13 - Prob. 108PCh. 13 - Water flows over a 2-m-high sharp-crested...Ch. 13 - Prob. 110EPCh. 13 - Prob. 111EPCh. 13 - Prob. 112PCh. 13 - Prob. 114PCh. 13 - Repeat Prob. 13-111 for an upstream flow depth of...Ch. 13 - Prob. 116PCh. 13 - Prob. 117PCh. 13 - Repeat Prob. 13-114 for an upstream flow depth of...Ch. 13 - Consider uniform water flow in a wide channel made...Ch. 13 - Prob. 120PCh. 13 - Prob. 121PCh. 13 - Water flows in a canal at an average velocity of 4...Ch. 13 - Prob. 123PCh. 13 - A trapczoda1 channel with brick lining has a...Ch. 13 - Prob. 127PCh. 13 - A rectangular channel with a bottom width of 7 m...Ch. 13 - Prob. 129PCh. 13 - Prob. 131PCh. 13 - Prob. 132PCh. 13 - Consider o identical channels, one rectangular of...Ch. 13 - Prob. 134PCh. 13 - The flow rate of water in a 6-m-ide rectangular...Ch. 13 - Prob. 136EPCh. 13 - Prob. 137EPCh. 13 - Consider two identical 15-ft-wide rectangular...Ch. 13 - Prob. 140PCh. 13 - Prob. 141PCh. 13 - A sluice gate with free outflow is used to control...Ch. 13 - Prob. 143PCh. 13 - Prob. 144PCh. 13 - Repeat Prob. 13-142 for a velocity of 3.2 ms after...Ch. 13 - Water is discharged from a 5-rn-deep lake into a...Ch. 13 - Prob. 147PCh. 13 - Prob. 148PCh. 13 - Prob. 149PCh. 13 - Prob. 150PCh. 13 - Prob. 151PCh. 13 - Prob. 152PCh. 13 - Prob. 153PCh. 13 - Water f1ows in a rectangular open channel of width...Ch. 13 - Prob. 155PCh. 13 - Prob. 156PCh. 13 - Prob. 157PCh. 13 - Prob. 158PCh. 13 - Prob. 159PCh. 13 - Prob. 160PCh. 13 - Prob. 161PCh. 13 - Prob. 162PCh. 13 - Prob. 163PCh. 13 - Prob. 164PCh. 13 - Prob. 165PCh. 13 - Prob. 166PCh. 13 - Consider water flow in the range of 10 to 15 m3/s...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License