Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Question
Chapter 13, Problem 131P
To determine
The relation for the flow rate of the water through a parabolic notch.
Value of the flow rate of the water through a parabolic notch.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An oil of S.G of 0.8 is flowing
in a stream tube as shown in
the figure. The discharge
through the tube is 0.06
m³/s. The angle at the inlet is
0° and at the outlet is 30°.
Determine
i. the bend force in x-
direction
ii. the bend force in y-
direction
P2=1.3 bar
D2=0.2 m
Fy
P1=2 bar
D1=0.4 m
S.G=0.8
Q=0.06 m³/s
A water discharge 8 m^3/s is to flow through this horizontal pipe, which is 1 m in diameter. If the head loss is given as 7 V^2/2g (V is velocity in the pipe), how much power will have to be supplied to the flow by the pump to produce this discharge? Plot also the EGL and HGL against the given diagram.
Flow takes place between three reservoirs, as shown in Figure 1. The volume flow rateout of reservoirs A and B is 0.15 m3/s and 0.25 m3/s respectively. If the coefficient offriction for the three pipes is 0.008, determine the relative elevations of the freesurfaces. Neglect all losses other than friction.
PLEASE USE THE BERNOULLI EQUATION
L1 = 1000 m D1 = 200 mmL2 = 1500 m D2 = 250 mmL3 = 2000 m D3 = 400 mm
Chapter 13 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 13 - What is normal depth? Explain how it is...Ch. 13 - Prob. 2CPCh. 13 - Prob. 3CPCh. 13 - Prob. 4CPCh. 13 - What is the driving force for flow in an open...Ch. 13 - How does uniform flow differ from nonuniform flow...Ch. 13 - Prob. 7CPCh. 13 - Prob. 8CPCh. 13 - Prob. 9CPCh. 13 - Prob. 10CP
Ch. 13 - Prob. 11PCh. 13 - Prob. 12PCh. 13 - Prob. 13PCh. 13 - Prob. 14PCh. 13 - Prob. 15EPCh. 13 - Prob. 16PCh. 13 - Water at 10°C flows in a 3-rn-diameter circular...Ch. 13 - Prob. 18PCh. 13 - Water at 20°C flows in a partially full...Ch. 13 - Prob. 20CPCh. 13 - Prob. 21CPCh. 13 - Prob. 22CPCh. 13 - Prob. 23CPCh. 13 - Prob. 24CPCh. 13 - Prob. 25CPCh. 13 - Prob. 26CPCh. 13 - Consider steady supercritical flow of water...Ch. 13 - During steady and uniform flow through an open...Ch. 13 - How is the friction slope defined? Under what...Ch. 13 - Prob. 30PCh. 13 - Prob. 31PCh. 13 - Prob. 32EPCh. 13 - Prob. 33EPCh. 13 - Prob. 34PCh. 13 - Prob. 35PCh. 13 - Prob. 36PCh. 13 - Prob. 37PCh. 13 - Prob. 38PCh. 13 - Prob. 39PCh. 13 - Prob. 40CPCh. 13 - Prob. 41CPCh. 13 - Which is the best hydraulic cross section for an...Ch. 13 - Prob. 43CPCh. 13 - Prob. 44CPCh. 13 - Prob. 45CPCh. 13 - Prob. 46CPCh. 13 - Prob. 47PCh. 13 - Water flows uniformly half-full in a 2-m-diameter...Ch. 13 - Prob. 49PCh. 13 - A 3-ft-diameter semicircular channel made of...Ch. 13 - Prob. 51PCh. 13 - Prob. 52PCh. 13 - Prob. 53PCh. 13 - Prob. 54PCh. 13 - Prob. 55PCh. 13 - Prob. 56PCh. 13 - Water is to be transported n a cast iron...Ch. 13 - Prob. 58PCh. 13 - Prob. 59PCh. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - Prob. 64EPCh. 13 - Prob. 65EPCh. 13 - Prob. 66PCh. 13 - Repeat Prob. 13-60 for a weedy excavated earth...Ch. 13 - How does gradually varied flow (GVF) differ from...Ch. 13 - How does nonuniform or varied flow differ from...Ch. 13 - Prob. 70CPCh. 13 - Consider steady flow of water; an upward-sloped...Ch. 13 - Is it possible for subcritical flow to undergo a...Ch. 13 - Why is the hydraulic jump sometimes used to...Ch. 13 - Consider steady flow of water in a horizontal...Ch. 13 - Consider steady flow of water in a downward-sloped...Ch. 13 - Prob. 76CPCh. 13 - Prob. 77CPCh. 13 - Water is flowing in a 90° V-shaped cast iron...Ch. 13 - Prob. 79PCh. 13 - Consider the flow of water through a l2-ft-wde...Ch. 13 - Prob. 81PCh. 13 - Water discharging into a 9-m-wide rectangular...Ch. 13 - Prob. 83PCh. 13 - Prob. 84PCh. 13 - Prob. 85EPCh. 13 - Water flowing in a wide horizontal channel at a...Ch. 13 - During a hydraulic jump in a W'ide chanrel. the...Ch. 13 - Prob. 93CPCh. 13 - Prob. 96CPCh. 13 - Prob. 97CPCh. 13 - Prob. 98CPCh. 13 - Prob. 99PCh. 13 - Prob. 100PCh. 13 - Prob. 101CPCh. 13 - Consider uniform water flow in a wide rectangular...Ch. 13 - Consider the uniform flow of water in a wide...Ch. 13 - Prob. 105PCh. 13 - Prob. 106EPCh. 13 - Prob. 107PCh. 13 - Prob. 108PCh. 13 - Water flows over a 2-m-high sharp-crested...Ch. 13 - Prob. 110EPCh. 13 - Prob. 111EPCh. 13 - Prob. 112PCh. 13 - Prob. 114PCh. 13 - Repeat Prob. 13-111 for an upstream flow depth of...Ch. 13 - Prob. 116PCh. 13 - Prob. 117PCh. 13 - Repeat Prob. 13-114 for an upstream flow depth of...Ch. 13 - Consider uniform water flow in a wide channel made...Ch. 13 - Prob. 120PCh. 13 - Prob. 121PCh. 13 - Water flows in a canal at an average velocity of 4...Ch. 13 - Prob. 123PCh. 13 - A trapczoda1 channel with brick lining has a...Ch. 13 - Prob. 127PCh. 13 - A rectangular channel with a bottom width of 7 m...Ch. 13 - Prob. 129PCh. 13 - Prob. 131PCh. 13 - Prob. 132PCh. 13 - Consider o identical channels, one rectangular of...Ch. 13 - Prob. 134PCh. 13 - The flow rate of water in a 6-m-ide rectangular...Ch. 13 - Prob. 136EPCh. 13 - Prob. 137EPCh. 13 - Consider two identical 15-ft-wide rectangular...Ch. 13 - Prob. 140PCh. 13 - Prob. 141PCh. 13 - A sluice gate with free outflow is used to control...Ch. 13 - Prob. 143PCh. 13 - Prob. 144PCh. 13 - Repeat Prob. 13-142 for a velocity of 3.2 ms after...Ch. 13 - Water is discharged from a 5-rn-deep lake into a...Ch. 13 - Prob. 147PCh. 13 - Prob. 148PCh. 13 - Prob. 149PCh. 13 - Prob. 150PCh. 13 - Prob. 151PCh. 13 - Prob. 152PCh. 13 - Prob. 153PCh. 13 - Water f1ows in a rectangular open channel of width...Ch. 13 - Prob. 155PCh. 13 - Prob. 156PCh. 13 - Prob. 157PCh. 13 - Prob. 158PCh. 13 - Prob. 159PCh. 13 - Prob. 160PCh. 13 - Prob. 161PCh. 13 - Prob. 162PCh. 13 - Prob. 163PCh. 13 - Prob. 164PCh. 13 - Prob. 165PCh. 13 - Prob. 166PCh. 13 - Consider water flow in the range of 10 to 15 m3/s...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- please provide step-by-step calculationsarrow_forwardGiven an open tank filled with oil that is discharging through a 35-meter long commercial annulus pipe as shown in figure below. Calculate the volume flowrate at point 2 when the oil surface is 5 meters from it. Neglect entrance effects take kinematic viscosity equal to 4 x10-5 m2/s. (Ro and Ri are radaii).arrow_forwardAs shown in the following figure, a pipe of cross-sectional area A = 0.01 m2 and atotal length of 5.5 m is used for siphoning water from a tank. The discharge from the siphonis 1.0 m below the level of the water in the tank. At its highest point, the pipe rises 1.5 mabove the level in the tank.(a) What is the water velocity v (m/s) at the discharge? (b) What is the lowest gauge pressure (in bars) in the tube? And wheredoes it occur? Neglect pipe friction. Is the lowest pressure higher than the vapor pressureof water at room temperature?(c) If the siphon reaches virtually all the way to the bottom of the tank (but is notblocked off), is the time taken to drain the tank equal to t = V/Av, where V is the initialvolume of water in the tank, and v is still the velocity (e.g., 4.43 m/s) as computed abovewhen the tank is full? Explain your answer.(d) A siphon can drain the liquid in the tank, which means that the liquid flowsupward at the right-hand side of the tube. It appears to be…arrow_forward
- Water flows through a venturi as shown in the figure at a flow rate of Q= 12 L/s. The inlet and throat diameters of the venturi meter are (D = 4.0 cm and d = 3.5 cm) respectively. The height of water column in the manometers L, = 165 cm and L, = 50 cm respectively. What is the head loss (cm) in the venturi (between 1 & 3)? Li L3 (2 d (3arrow_forwardQuestion Water is draining from the bottom of a cone- shaped funnel at the rate of 0.8 ft³/sec. The height of the funnel is 6 ft and the radius at th top of the funnel is 5 ft, as shown in the imag below. At what rate is the height of the water the funnel changing when the height of the w is 4 ft? Submit an exact answer in terms of л. Provide your answer below: dh dt ft/sec 5arrow_forwardA horizontal water pipe of 15 cm diameter converges to a 7.5 cm diameter. If the pressures at the two sections are 400 kPa, and 150 kPa respectively, calculate the flow rate of water in cubic meters per secondarrow_forward
- Solve this pleasearrow_forwardAnswer this pleasearrow_forwardGiven an open tank filled with oil that is discharging through a 35-meter long commercial annulus pipe as shown in figure below. Calculate the volume flowrate at point 2 when the oil surface is 5 meters from it. Neglect entrance effects take kinematic viscosity equal to 4 x10* m/s. (Ro and Ri are radaii). h = 5 m Ro = 5 cm %D Ri = 2 cm Q. V L= 35 m Oil (SG = 0.9) %3Darrow_forward
- A 0.4 m-diameter pipe bend shown in the diagram is carrying crude oil (S = 0.65) with a steady flow with velocity of 3 m/s. The bend has an angle of 30° and lies in a vertical plane. The volume of oil in the bend is 1.2 m3, and the empty weight of the bend is 4 kN. Assume the pressure along the centerline of the bend is constant with a value of 85 kPa gage. Water density = 1000 kg/m3, g= 9.81 m/s?, Patm = 100 kPa, frictionless flow. Answer the following: Bolted flange Flow 30 The net pressure force along the horizontal direction (N). Net out flow rate of momentum through the control surface (N) in the horizontal direction. Absolute value.arrow_forwardIn the expanding pipe system with circular cross section given in the figure, the fluid moves from point A to point B with a flow rate of 0.2 m'/s. Since the pressure height at point A is 7 m and energy loss during movement is 0.1 m, find the pressure height at point B. Draw the energy line of the system on the figure.arrow_forwardWater flows into a tank and out through another pipe, as shown in the figure below. The water in the tank has a surface area, Asurf= 6 m^2. At the bottom of the tank there is a door inclined at an angle θ= 40 degrees with respect to the horizontal. The door has a length L=1.1 m and a width w=1 m (out of the page). The flowrate into the tank is Qi(t)=0.27 m^3/s and the flowrate out is Qo(t)= 0.09 m^3/s At time t=0, the water has a depth h0= 2 m. The density of water is ρ=1000 kg/m^3. a) Find the pressure (in kilopascals) at time t=0 b) Find the vertical force (in Newtons) on the door at time t=0c) Find the height (in metres) of the fluid at time t=100 sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License