
Concept explainers
(a)
Interpretation: To indicate whether B vitamin thiamin is involved in (1) glycolysis, (2) gluconeogenesis, (3) lactate fermentation, or (4) glycogenolysis as a cofactor.
Concept introduction: Vitamins are defined as the micronutrients that are needed in a small amount for the proper functioning of the metabolic activities in the organisms.
Cofactors are non-protein organic compounds that are used along with the enzymes and help to carry forward the reaction. Cofactors cannot perform on their own alone.
In the glycolysis metabolic pathway, a glucose molecule breaks down into two pyruvate molecules. In gluconeogenesis process, glucose is produced from non-carbohydrate substances. Glycogenolysis is the metabolic pathway that converts glycogen to
In the absence of oxygen, pyruvate is converted to lactate by lactate dehydrogenase enzymes in the human body. In this reaction, NADH is oxidized to
Niacin
(a)

Answer to Problem 13.117EP
None of the given processes includes B vitamin thiamin as a cofactor. B vitamin thiamin is needed as a cofactor in the conversion of pyruvate to
Explanation of Solution
B vitamin thiamin is encountered in the form of thiamin pyrophosphate (TPP) in the carbohydrate metabolism. TPP in not involved in glycolysis, gluconeogenesis, lactate fermentation, and glycogenolysis. Hence, none of the given processes includes vitamin thiamin as a cofactor.
Pyruvate is converted to
Pyruvate dehydrogenase complex contains three different enzymes. Each enzyme contains numerous subunits. The overall reaction requires FAD,
(b)
Interpretation: To indicate B vitamin riboflavin is involved in (1) glycolysis, (2) gluconeogenesis, (3) lactate fermentation, or (4) glycogenolysis as a cofactor.
Concept introduction: Vitamins are defined as the micronutrients that are needed in a small amount for the proper functioning of the metabolic activities in the organisms.
Cofactors are non-protein organic compounds that are used along with the enzymes and help to carry forward the reaction. Cofactors cannot perform on their own alone.
In the glycolysis metabolic pathway, a glucose molecule breaks down into two pyruvate molecules. In gluconeogenesis process, glucose is produced from non-carbohydrate substances. Glycogenolysis is the metabolic pathway that converts glycogen to
In the absence of oxygen, pyruvate is converted to lactate by lactate dehydrogenase enzymes in the human body. In this reaction, NADH is oxidized to
Niacin
(b)

Answer to Problem 13.117EP
None of the given processes includes vitamin riboflavin as a cofactor. B vitamin riboflavin is needed as a cofactor in the citric acid cycle.
Explanation of Solution
B vitamin riboflavin is encountered in the form of FAD(Flavin adenine dinucleotide) in the carbohydrate metabolism. FAD in not involved in glycolysis, gluconeogenesis, lactate fermentation, and glycogenolysis. Hence, none of the given processes includes B vitamin riboflavin as a cofactor.
The citric acid cycle is the third stage of the biochemical energy production process. The cycle includes the reactions in which the acetyl part of acetyl CoA is oxidized and leads to the formation of carbon dioxide and
(c)
Interpretation: To indicate whether B vitamin pantothenic acid is involved in (1) glycolysis, (2) gluconeogenesis, (3) lactate fermentation, or (4) glycogenolysis as a cofactor.
Concept introduction: Vitamins are defined as the micronutrients that are needed in a small amount for the proper functioning of the metabolic activities in the organisms.
Cofactors are non-protein organic compounds that are used along with the enzymes and help to carry forward the reaction. Cofactors cannot perform on their own alone.
In the glycolysis metabolic pathway, a glucose molecule breaks down into two pyruvate molecules. In gluconeogenesis process, glucose is produced from non-carbohydrate substances. Glycogenolysis is the metabolic pathway that converts glycogen to
In the absence of oxygen, pyruvate is converted to lactate by lactate dehydrogenase enzymes in the human body. In this reaction, NADH is oxidized to
Niacin
(c)

Answer to Problem 13.117EP
None of the given processes includes B vitamin pantothenic acid as a cofactor. B vitamin pantothenic acid is needed as a cofactor in the conversion of pyruvate to
Explanation of Solution
B vitamin pantothenic acid is encountered in the form of
Pyruvate is converted to
Pyruvate dehydrogenase complex contains three different enzymes. Each enzyme contains numerous subunits. The overall reaction requires FAD,
(d)
Interpretation: To indicate
Concept introduction: Vitamins are defined as the micronutrients that are needed in a small amount for the proper functioning of the metabolic activities in the organisms.
Cofactors are non-protein organic compounds that are used along with the enzymes and help to carry forward the reaction. Cofactors cannot perform on their own alone.
In the glycolysis metabolic pathway, a glucose molecule breaks down into two pyruvate molecules. In gluconeogenesis process, glucose is produced from non-carbohydrate substances. Glycogenolysis is the metabolic pathway that converts glycogen to
In the absence of oxygen, pyruvate is converted to lactate by lactate dehydrogenase enzymes in the human body. In this reaction, NADH is oxidized to
Niacin

Answer to Problem 13.117EP
Explanation of Solution
Want to see more full solutions like this?
Chapter 13 Solutions
Organic And Biological Chemistry
- elow are experimentally determined van Deemter plots of column efficiency, H, vs. flow rate. H is a quantitative measurement of band broadening. The left plot is for a liquid chromatography application and the night is for gas chromatography. Compare and contrast these two plots in terms of the three band broadening mechanisms presented in this activity. How are they similar? How do they differ? Justify your answers.? 0.4 H (mm) 0.2 0.1- 0.3- 0 0.5 H (mm) 8.0 7.0 6.0 5.0 4.0- 3.0 T +++ 1.0 1.5 0 2.0 4.0 Flow Rate, u (cm/s) 6.0 8.0 Flow Rate, u (cm/s)arrow_forwardPredict the products of this organic reaction: + H ZH NaBH3CN H+ n. ? Click and drag to start drawing a structure. Xarrow_forwardWhat is the missing reactant R in this organic reaction? + R H3O+ + • Draw the structure of R in the drawing area below. • Be sure to use wedge and dash bonds if it's necessary to draw one particular enantiomer. Click and drag to start drawing a structure.arrow_forward
- What would be the best choices for the missing reagents 1 and 3 in this synthesis? 1 1. PPh3 2. n-BuLi 2 • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Click and drag to start drawing a structure.arrow_forwardThe product on the right-hand side of this reaction can be prepared from two organic reactants, under the conditions shown above and below the arrow. Draw 1 and 2 below, in any arrangement you like. 1+2 NaBH₂CN H+ N Click and drag to start drawing a structure. X $arrow_forwardExplain what is the maximum absorbance of in which caffeine absorbs?arrow_forward
- Explain reasons as to why the amount of caffeine extracted from both a singular extraction (5ml Mountain Dew) and a multiple extraction (2 x 5.0ml Mountain Dew) were severely high when compared to coca-cola?arrow_forwardProtecting Groups and Carbonyls 6) The synthesis generates allethrolone that exhibits high insect toxicity but low mammalian toxicity. They are used in pet shampoo, human lice shampoo, and industrial sprays for insects and mosquitos. Propose detailed mechanistic steps to generate the allethrolone label the different types of reagents (Grignard, acid/base protonation, acid/base deprotonation, reduction, oxidation, witting, aldol condensation, Robinson annulation, etc.) III + VI HS HS H+ CH,CH,Li III I II IV CI + P(Ph)3 V ༼ Hint: no strong base added VI S VII IX HO VIII -MgBr HgCl2,HgO HO. isomerization aqeuous solution H,SO, ༽༽༤༽༽ X MeOH Hint: enhances selectivity for reaction at the S X ☑arrow_forwardDraw the complete mechanism for the acid-catalyzed hydration of this alkene. esc 田 Explanation Check 1 888 Q A slock Add/Remove step Q F4 F5 F6 A བྲA F7 $ % 5 @ 4 2 3 & 6 87 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Ce W E R T Y U S D LL G H IK DD 요 F8 F9 F10 F1 * ( 8 9 0 O P J K L Z X C V B N M H He commandarrow_forward
- Explanation Check F1 H₂O H₂ Pd 1) MCPBA 2) H3O+ 1) Hg(OAc)2, H₂O 2) NaBH4 OH CI OH OH OH hydration halohydrin formation addition halogenation hydrogenation inhalation hydrogenation hydration ☐ halohydrin formation addition halogenation formation chelation hydrogenation halohydrin formation substitution hydration halogenation addition Ohalohydrin formation subtraction halogenation addition hydrogenation hydration F2 80 F3 σ F4 F5 F6 1 ! 2 # 3 $ 4 % 05 Q W & Å © 2025 McGraw Hill LLC. All Rights Reserved. F7 F8 ( 6 7 8 9 LU E R T Y U A F9arrow_forwardShow the mechanism steps to obtain the lowerenergy intermediate: *see imagearrow_forwardSoap is made by the previous reaction *see image. The main difference between one soap and another soap isthe length (number of carbons) of the carboxylic acid. However, if a soap irritates your skin, they mostlikely used too much lye.Detergents have the same chemical structure as soaps except for the functional group. Detergentshave sulfate (R-SO4H) and phosphate (R-PO4H2) functional groups. Draw the above carboxylic acidcarbon chain but as the two variants of detergents. *see imagearrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co




