Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.6, Problem 23P
To determine
The enthalpy of vaporization of water at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Using Clapeyron relationship, estimate the enthalpy of evaporation of Re-134a at
10°C. Report your answer in kJ/kg and compare it with the data provided in table
A-11.
Question : Determine the units of the quantity s ̄/Ru, where s ̄ is the molar specific entropy and Ru is the universal gas constant.
Explain your answer please
Saturated water vapor at 200.111 oC is isothermally condensed to a saturated liquid in a piston-cylinder device. Calculate (d) change of entropy, and (e) change of enthalpy.
Chapter 12 Solutions
Thermodynamics: An Engineering Approach
Ch. 12.6 - What is the difference between partial...Ch. 12.6 - Consider a function z(x, y) and its partial...Ch. 12.6 - Prob. 3PCh. 12.6 - Conside the function z(x, y), its partial...Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - 12–7 Nitrogen gas at 400 K and 300 kPa behaves as...Ch. 12.6 - Nitrogen gas at 800 R and 50 psia behaves as an...Ch. 12.6 - Prob. 9PCh. 12.6 - Using the equation of state P(v a) = RT, verify...
Ch. 12.6 - Prob. 11PCh. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Prob. 14PCh. 12.6 - Prob. 15PCh. 12.6 - Prob. 16PCh. 12.6 - Prob. 17PCh. 12.6 - Prove that (PT)=kk1(PT)v.Ch. 12.6 - Prob. 19PCh. 12.6 - Prob. 20PCh. 12.6 - Using the Clapeyron equation, estimate the...Ch. 12.6 - Prob. 22PCh. 12.6 - Prob. 23PCh. 12.6 - Determine the hfg of refrigerant-134a at 10F on...Ch. 12.6 - Prob. 25PCh. 12.6 - Prob. 26PCh. 12.6 - Prob. 27PCh. 12.6 - Prob. 28PCh. 12.6 - Prob. 29PCh. 12.6 - 12–30 Show that =
Ch. 12.6 - Prob. 31PCh. 12.6 - Prob. 32PCh. 12.6 - Prob. 33PCh. 12.6 - Prob. 34PCh. 12.6 - Prob. 35PCh. 12.6 - Prob. 36PCh. 12.6 - Determine the change in the internal energy of...Ch. 12.6 - Prob. 38PCh. 12.6 - Determine the change in the entropy of helium, in...Ch. 12.6 - Prob. 40PCh. 12.6 - Derive expressions for (a) u, (b) h, and (c) s for...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Show that cpcv=T(PT)V(VT)P.Ch. 12.6 - Prob. 44PCh. 12.6 - Prob. 45PCh. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the isothermal...Ch. 12.6 - Show that = ( P/ T)v.Ch. 12.6 - Prob. 49PCh. 12.6 - Prob. 50PCh. 12.6 - Show that the enthalpy of an ideal gas is a...Ch. 12.6 - Prob. 52PCh. 12.6 - Prob. 53PCh. 12.6 - The pressure of a fluid always decreases during an...Ch. 12.6 - Does the Joule-Thomson coefficient of a substance...Ch. 12.6 - Will the temperature of helium change if it is...Ch. 12.6 - Prob. 59PCh. 12.6 - Prob. 60PCh. 12.6 - 12–61E Estimate the Joule-Thomson-coefficient of...Ch. 12.6 - Prob. 62PCh. 12.6 - Consider a gas whose equation of state is P(v a)...Ch. 12.6 - Prob. 64PCh. 12.6 - On the generalized enthalpy departure chart, the...Ch. 12.6 - Why is the generalized enthalpy departure chart...Ch. 12.6 - Prob. 67PCh. 12.6 - Prob. 68PCh. 12.6 - Prob. 69PCh. 12.6 - Prob. 70PCh. 12.6 - Prob. 71PCh. 12.6 - Prob. 72PCh. 12.6 - Prob. 73PCh. 12.6 - Prob. 75PCh. 12.6 - Propane is compressed isothermally by a...Ch. 12.6 - Prob. 78PCh. 12.6 - Prob. 80RPCh. 12.6 - Starting with the relation dh = T ds + vdP, show...Ch. 12.6 - Show that cv=T(vT)s(PT)vandcp=T(PT)s(vT)PCh. 12.6 - Temperature and pressure may be defined as...Ch. 12.6 - For ideal gases, the development of the...Ch. 12.6 - Prob. 85RPCh. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - Prob. 88RPCh. 12.6 - Estimate the cpof nitrogen at 300 kPa and 400 K,...Ch. 12.6 - Prob. 90RPCh. 12.6 - Prob. 91RPCh. 12.6 - An adiabatic 0.2-m3 storage tank that is initially...Ch. 12.6 - Prob. 93RPCh. 12.6 - Methane is to be adiabatically and reversibly...Ch. 12.6 - Prob. 96RPCh. 12.6 - Prob. 98RPCh. 12.6 - Prob. 99RPCh. 12.6 - Prob. 100FEPCh. 12.6 - Consider the liquidvapor saturation curve of a...Ch. 12.6 - Prob. 102FEPCh. 12.6 - For a gas whose equation of state is P(v b) = RT,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 4) A sample of argon at 01 atm pressure and 25C expands reversibly and adiabatically from 0.5 L to 1.0 L. Calculate its final temperature, the work done during the expansion, and the change in internal energy. The molar heat capacity of argon at constant volume is 12.48 JK-1mol-1.arrow_forwardA 653 g/h stream of methyl alcohol, also called methanol, at 6.0atm 10.0C was held at constant pressure, vaporized, and brought to 241.0C. At what rate must heat, be supplied to this system ? Assume that methyl alcohol vapor behaves ideally for the temperature range and pressure given.arrow_forwardGiven that μ = 0.25Katm−1 for nitrogen, calculate the value of its isothermal Joule–Thomson coefficient. Calculate the energy that must be supplied as heat to maintain constant temperature when 15.0 mol N2 flows through a throttle in an isothermal Joule–Thomson experiment and the pressure drop is 75 atm.arrow_forward
- where are you finding v=0.0159939 m3/kg ? , when I look for the specific volume for saturate steam at 11000 kpa , I am finding vg=15.987 ?arrow_forward0.15 m3 of an ideal gas at a pressure of 15 bar and 552 K is expanded isothermally to 4 times the initial volume. It is then cooled to 290K at constant volume and then compressed back polytropically to its initial state. Calculate the net work done and heat transferred during the cyclearrow_forwardA mole sample of liquid ammonia at 273 Kelvin is cooled to liquid ammonia at 240 Kelvin. The process is done irreversibly by placing the sample in liquid nitrogen at 77 Kelvin. The heat capacity relationship for ammonia gas is given below. Assuming that the heat of vaporization is 23.4 KiloJoules per mole, answer the questions that follow. What is the entropy change of this process (in Joules per Kelvin)? Express answer in THREE SIGNIFICANT FIGURES. What is the entropy change of the surroundings for this process (in Joules per Kelvin)? Express answer in THREE SIGNIFICANT FIGURES. What is the total entropy change (or the entropy of the universe) for this process (in Joules per Kelvin)? Express answer in THREE SIGNIFICANT FIGURES.arrow_forward
- Steam at a pressure of 3.5 MPa is known to have a specific volume of 50×10*-3 m*3/kg. Find the enthalpy of the mixture ink KJ/s if the mass flow rate of the steam is 3.443 kg/s.arrow_forwardUsing the Clapeyron equation, estimate the enthalpy of vaporization of refrigerant-134a at 46°C. Use data from the tables. The enthalpy of vaporization of refrigerant-134a at 46°C is kJ/kg.arrow_forwardEstimate the Joule-Thomson coefficient for steam at 3MPA and 300°C using the steam tables. Estimate the Joule-Thomson coefficient for steam at 6MPA and 500°C using the steam tables. During phase change the Joule-Thomson coefficient is always positive or negative? Using gure A-14E (or A-14) in the tables of your book, is the Joule-Thomson coefficient ever negative for r134a? If so, where is it negative relative to temperature and pressure?arrow_forward
- A frictionless piston-cylinder contains 42 kilograms of Acetylene having a pressure of 22 bar at 320 degrees Celsius. Heating occurs at constant pressure causing the piston to move until the volume is tripled. Compute for the (a) heat, (b) change in internal energy, (c) change in enthalpy (d) change in entropy, and (e) the non-flow work. (f) If ΔPE = 0.2 kJ and ΔKE = 1.35 kJ, what is the steady-flow work?arrow_forwardPlease solve this correctlyarrow_forwardA 1.40 kg sample of water at 15.0°C is in a calorimeter. You drop a piece of steel with a mass of 0.330 kg at 230°C into it. After the sizzling subsides, what is the final equilibrium temperature (in °C)? (Make the reasonable assumptions that any steam produced condenses into liquid water during the process of equilibration and that the evaporation and condensation don't affect the outcome.) °Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY