![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9780073398174/9780073398174_largeCoverImage.gif)
Concept explainers
The change in enthalpy
The change in entropy
The change in enthalpy
The change in entropy
![Check Mark](/static/check-mark.png)
Answer to Problem 71P
The change in enthalpy
The change in entropy
The change in enthalpy
The change in entropy
Explanation of Solution
Write the mean change in enthalpy
Here, enthalpy of water vapor at temperature of 647.1 K is
Write the change in enthalpy
Here, molar mass of water vapor is
Write the mean change in entropy
Here, gas constant is R, initial pressure is
Write the change in entropy
Write the reduced temperature
Here, critical temperature is
Write the reduced pressure
Here, critical pressure is
Write the reduced temperature
Here, critical temperature is
Write the reduced pressure
Here, critical pressure is
Write the change in enthalpy
Here, change in enthalpy of water vapor is
Write the change in enthalpy
Here, change in entropy of water vapor is
Conclusion:
Convert the unit of initial temperature
Convert the unit of initial temperature
Refer table A-23, “Ideal gas properties of water vapor”, obtain the enthalpy of water vapor at temperature of
Substitute
Refer table A-1, “Molar mass properties table”, obtain the molar mass
Refer the table A-20,”Water vapor properties of water vapor table”, select the entropy of water vapor at temperature of
Substitute
Substitute 873 K for
Substitute
Refer the table A-15, “Nelson-Obert generalized compressibility chart”, select the initial state of compressibility factor
Substitute 673 K for
Substitute
Refer the table A-15, “Nelson-Obert generalized compressibility chart”, select the initial state of compressibility factor
From the gas constant properties table A-1, select the gas constant of water vapor as
Substitute
Substitute
Thus, the change in enthalpy
Substitute
Substitute
Thus, the change in entropy
Refer table A-6, “Superheated water table”, select the inlet enthalpy and exit enthalpy at pressure of
Thus, the change in enthalpy
Refer table A-6, “Superheated water table”, select the inlet entropy and exit entropy at pressure of
Thus, the change in entropy
Want to see more full solutions like this?
Chapter 12 Solutions
Thermodynamics: An Engineering Approach
- Qu. 17 Compute linear density values for [100] for silver (Ag). Express your answer in nm''. . Round off the answer to three significant figures. Qu. 18 Compute linear density value for [111] direction for silver (Ag). Express your answer in nm'. Round off the answer to three significant figures. Qu. 19 Compute planar density value for (100) plane for chromium (Cr). Express your answer in nm?. Round off the answer to two significant figures. Qu. 20 Compute planar density value for (110) plane for chromium (Cr). Express your answer in nm ≥ to four significant figures. show all work please in material engineeringarrow_forward3-142arrow_forwardI need solutionsarrow_forward
- 3-137arrow_forwardLarge wind turbines with a power capacity of 8 MW and blade span diameters of over 160 m areavailable for electric power generation. Consider a wind turbine with a blade span diameter of 120m installed at a site subjected to steady winds at 8.25 m/s. Taking the overall efficiency of thewind turbine to be 33 percent and the air density to be 1.25 kg/m3, determine the electric powergenerated by this wind turbine. Also, assuming steady winds of 8.25 m/s during a 24-h period,determine the amount of electric energy and the revenue generated per day for a unit price of$0.08/kWh for electricity.arrow_forwardThe basic barometer can be used to measure the height of a building. If the barometric readingsat the top and at the bottom of a building are 672 and 696 mmHg, respectively, determine theheight of the building. Take the densities of air and mercury to be 1.18 kg/m3 and 13,600 kg/m3,respectivelyarrow_forward
- A 7.25-hp (shaft) pump is used to raise water to an elevation of 17 m. If the mechanical efficiencyof the pump is 84 percent, determine the maximum volume flow rate of water.arrow_forwardConsider a double-fluid manometer attached to an air pipe shown below. If the specific gravity ofone fluid is 13.8, determine the specific gravity of the other fluid for the indicated absolutepressure of air. Take the atmospheric pressure to be 95 kPaarrow_forwardA race car enters the circular portion of a track that has a radius of 65 m. Disregard the 70 m in the picture. When the car enters the curve at point P, it is traveling with a speed of 120 km/h that is increasing at 5 m/s^2 . Three seconds later, determine the x and y components of velocity and acceleration of the car. I'm having trouble getting the correct y component of acceleration. all the other answers are correct. thank you!arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)