Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.6, Problem 50P
To determine
To show how to obtain the expressions for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4 kmol of oxygen (O₂) gas undergoes a process in a closed system from p₁ = 50 bar,
T₁ = 170 K to P2 = 25 bar, T₂ = 200 K.
Determine the change in volume, in m³.
xm³
AV = 1.82634
Two kilograms of gas with R = 0.218 kJ/(kg-K) undergoes a process and results to the following changes: ΔH = 3150 kJ, ΔU = 2450 kJ. Find the specific heat ratio, k.
-Thermodynamics- determine the properties of the saturated liquid at 10 bar. Locate the state on a T-S diagram.
Chapter 12 Solutions
Thermodynamics: An Engineering Approach
Ch. 12.6 - What is the difference between partial...Ch. 12.6 - Consider a function z(x, y) and its partial...Ch. 12.6 - Prob. 3PCh. 12.6 - Conside the function z(x, y), its partial...Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - 12–7 Nitrogen gas at 400 K and 300 kPa behaves as...Ch. 12.6 - Nitrogen gas at 800 R and 50 psia behaves as an...Ch. 12.6 - Prob. 9PCh. 12.6 - Using the equation of state P(v a) = RT, verify...
Ch. 12.6 - Prob. 11PCh. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Prob. 14PCh. 12.6 - Prob. 15PCh. 12.6 - Prob. 16PCh. 12.6 - Prob. 17PCh. 12.6 - Prove that (PT)=kk1(PT)v.Ch. 12.6 - Prob. 19PCh. 12.6 - Prob. 20PCh. 12.6 - Using the Clapeyron equation, estimate the...Ch. 12.6 - Prob. 22PCh. 12.6 - Prob. 23PCh. 12.6 - Determine the hfg of refrigerant-134a at 10F on...Ch. 12.6 - Prob. 25PCh. 12.6 - Prob. 26PCh. 12.6 - Prob. 27PCh. 12.6 - Prob. 28PCh. 12.6 - Prob. 29PCh. 12.6 - 12–30 Show that =
Ch. 12.6 - Prob. 31PCh. 12.6 - Prob. 32PCh. 12.6 - Prob. 33PCh. 12.6 - Prob. 34PCh. 12.6 - Prob. 35PCh. 12.6 - Prob. 36PCh. 12.6 - Determine the change in the internal energy of...Ch. 12.6 - Prob. 38PCh. 12.6 - Determine the change in the entropy of helium, in...Ch. 12.6 - Prob. 40PCh. 12.6 - Derive expressions for (a) u, (b) h, and (c) s for...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Show that cpcv=T(PT)V(VT)P.Ch. 12.6 - Prob. 44PCh. 12.6 - Prob. 45PCh. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the isothermal...Ch. 12.6 - Show that = ( P/ T)v.Ch. 12.6 - Prob. 49PCh. 12.6 - Prob. 50PCh. 12.6 - Show that the enthalpy of an ideal gas is a...Ch. 12.6 - Prob. 52PCh. 12.6 - Prob. 53PCh. 12.6 - The pressure of a fluid always decreases during an...Ch. 12.6 - Does the Joule-Thomson coefficient of a substance...Ch. 12.6 - Will the temperature of helium change if it is...Ch. 12.6 - Prob. 59PCh. 12.6 - Prob. 60PCh. 12.6 - 12–61E Estimate the Joule-Thomson-coefficient of...Ch. 12.6 - Prob. 62PCh. 12.6 - Consider a gas whose equation of state is P(v a)...Ch. 12.6 - Prob. 64PCh. 12.6 - On the generalized enthalpy departure chart, the...Ch. 12.6 - Why is the generalized enthalpy departure chart...Ch. 12.6 - Prob. 67PCh. 12.6 - Prob. 68PCh. 12.6 - Prob. 69PCh. 12.6 - Prob. 70PCh. 12.6 - Prob. 71PCh. 12.6 - Prob. 72PCh. 12.6 - Prob. 73PCh. 12.6 - Prob. 75PCh. 12.6 - Propane is compressed isothermally by a...Ch. 12.6 - Prob. 78PCh. 12.6 - Prob. 80RPCh. 12.6 - Starting with the relation dh = T ds + vdP, show...Ch. 12.6 - Show that cv=T(vT)s(PT)vandcp=T(PT)s(vT)PCh. 12.6 - Temperature and pressure may be defined as...Ch. 12.6 - For ideal gases, the development of the...Ch. 12.6 - Prob. 85RPCh. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - Prob. 88RPCh. 12.6 - Estimate the cpof nitrogen at 300 kPa and 400 K,...Ch. 12.6 - Prob. 90RPCh. 12.6 - Prob. 91RPCh. 12.6 - An adiabatic 0.2-m3 storage tank that is initially...Ch. 12.6 - Prob. 93RPCh. 12.6 - Methane is to be adiabatically and reversibly...Ch. 12.6 - Prob. 96RPCh. 12.6 - Prob. 98RPCh. 12.6 - Prob. 99RPCh. 12.6 - Prob. 100FEPCh. 12.6 - Consider the liquidvapor saturation curve of a...Ch. 12.6 - Prob. 102FEPCh. 12.6 - For a gas whose equation of state is P(v b) = RT,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Carbon dioxide (molar mass 44 kg/kmol) expands reversibly in a perfectly thermally insulated cylinder from 3.7 bar, 220 0C to a volume of 0.085 m3. If the initial volume occupied was 0.02 m3, calculate the gas constant to 3 decimal places. Assume nitrogen to be a perfect gas and take cv = 0.63 k J / k g K.arrow_forwardPLEASE HELP ANSWER THIS THERMODYNAMICS PRACTICE QUESTIONarrow_forward8- Air in a closed cylinder undergoes a polytropic process with a polytrophic index of 1.65. a- What is the work done during the process if the initial pressure, volume and temperature are 8 bar, 0.08 m' and 475°C respectively, the final pressure is 0.8 bar and air can be taken to be a perfect gas? b- What is the change in internal energy? e- What is the heat loss/gain during the process?arrow_forward
- Q3: In a closed vessel with a volume of 50 dm3 there are 2 moles of an ideal monoatomic gas with cv, m = 12.471 J K-1 mol-1 at 25°C. The vessel was heated to 125°C. Calculate the values of Q, W, AU, AH in Joules and the initial and final pressure in the system. R = 8,314 J K-1 mol-1. Cp,m = 20,785 J K-1 mol-1arrow_forwardIn general, when a system undergoes a change from state 1 to state 2, the change in enthalpy is given by: deltaH = deltaU + PdeltaV + VdeltaP + deltaPdeltaV Derive this equation from the First Law of Thermodynamics, indicating the conditions assumed for the derivation.arrow_forwardA PV diagram below, Figure 1, shows two possible states of a system containing three moles of a monatomic ideal gas. (P,= P2 = 450 Pa, V, = 2m', V,= 8m²) c. Draw the process which depicts an isothermal expansion from state 1 to the volume V, followed by an isochoric increase in temperature to state 2 and label this process (B). d. Find the change in internal energy of the gas for the two-step process (B) Figure 1 (N/m²) 500 ! 400+ 300+ 200+ 100 - + + + + 4 6. 8 10 V (m³) 2 Copyright © 2005 Pearson Prentice Hall, Inc.arrow_forward
- NEED IN RUSH PLEASE THANKS IN ADVANCEarrow_forwardDerive an expression for the specific heat difference of a substance whose equation of state is: P=[(RT)/(v-b)]-[a/(v*(v+b)*T1/2)] Where a and b are empirical constantsarrow_forwardThe equation dU = T dS – P dV is applicable to infinitesimal changes occurring in A.A closed system with changes in composition B.An open system with changes in composition C.An open system of constant composition D.A closed system of constant composition E.None of thesearrow_forward
- Please answer the questionarrow_forwardA chamber is divided equally into two parts by a membrane. One side contains Hydrogen, H2, at a pressure of 200 kPa and temperature of 300 K, and the other side is evacuated (a perfect vacuum). The total chamber volume is 0.005 m3. At time t = 0, the membrane ruptures and the hydrogen expands freely into the evacuated side. The chamber can be considered adiabatic (i.e. perfectly insulated). Find the final values of the temperature and pressure.arrow_forwardFive kmol of oxygen (O2) gas undergoes a process in a closed system from p1 = 50 bar, T1 = 185 K to p2 = 25 bar, T2 = 246 K.Determine the change in volume, in m3.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license