Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 12.6, Problem 68P
(a)
To determine
The enthalpy of nitrogen at
(b)
To determine
The enthalpy of nitrogen at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Determine the enthalpy change Ah of nitrogen, in kJ/kg, as it is heated from 600 to 1000K, using
(a) the empirical specific heat equation as a function of temperature (b) the C, value at the
average temperature and (c) the C, value at room temperature.
Consider water (H2O) at 320C and 6 Mpa. Determine the error in the specific volume predicted by the ideal gas law relative to the actual value. The molar mass of H2O is 18.02 g/mol
Determine the enthalpy change Ah of carbon monoxide, in kJ/kg, as it is heated from 300K to 1000 K, using:
(a) the empirical specific heat equation as a function of temperature (Table A-2c)
(b) the c, value at the average temperature (Table A-2b)
(c) the c, value at room temperature (Table A-2a)
(d) the ideal gas properties of carbon monoxide table (Table A-21).
Calculate the percent error between answers i) d & a, ii) d & b and iii) d & c.
Chapter 12 Solutions
Thermodynamics: An Engineering Approach
Ch. 12.6 - What is the difference between partial...Ch. 12.6 - Consider a function z(x, y) and its partial...Ch. 12.6 - Prob. 3PCh. 12.6 - Conside the function z(x, y), its partial...Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - 12–7 Nitrogen gas at 400 K and 300 kPa behaves as...Ch. 12.6 - Nitrogen gas at 800 R and 50 psia behaves as an...Ch. 12.6 - Prob. 9PCh. 12.6 - Using the equation of state P(v a) = RT, verify...
Ch. 12.6 - Prob. 11PCh. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Prob. 14PCh. 12.6 - Prob. 15PCh. 12.6 - Prob. 16PCh. 12.6 - Prob. 17PCh. 12.6 - Prove that (PT)=kk1(PT)v.Ch. 12.6 - Prob. 19PCh. 12.6 - Prob. 20PCh. 12.6 - Using the Clapeyron equation, estimate the...Ch. 12.6 - Prob. 22PCh. 12.6 - Prob. 23PCh. 12.6 - Determine the hfg of refrigerant-134a at 10F on...Ch. 12.6 - Prob. 25PCh. 12.6 - Prob. 26PCh. 12.6 - Prob. 27PCh. 12.6 - Prob. 28PCh. 12.6 - Prob. 29PCh. 12.6 - 12–30 Show that =
Ch. 12.6 - Prob. 31PCh. 12.6 - Prob. 32PCh. 12.6 - Prob. 33PCh. 12.6 - Prob. 34PCh. 12.6 - Prob. 35PCh. 12.6 - Prob. 36PCh. 12.6 - Determine the change in the internal energy of...Ch. 12.6 - Prob. 38PCh. 12.6 - Determine the change in the entropy of helium, in...Ch. 12.6 - Prob. 40PCh. 12.6 - Derive expressions for (a) u, (b) h, and (c) s for...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Show that cpcv=T(PT)V(VT)P.Ch. 12.6 - Prob. 44PCh. 12.6 - Prob. 45PCh. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the isothermal...Ch. 12.6 - Show that = ( P/ T)v.Ch. 12.6 - Prob. 49PCh. 12.6 - Prob. 50PCh. 12.6 - Show that the enthalpy of an ideal gas is a...Ch. 12.6 - Prob. 52PCh. 12.6 - Prob. 53PCh. 12.6 - The pressure of a fluid always decreases during an...Ch. 12.6 - Does the Joule-Thomson coefficient of a substance...Ch. 12.6 - Will the temperature of helium change if it is...Ch. 12.6 - Prob. 59PCh. 12.6 - Prob. 60PCh. 12.6 - 12–61E Estimate the Joule-Thomson-coefficient of...Ch. 12.6 - Prob. 62PCh. 12.6 - Consider a gas whose equation of state is P(v a)...Ch. 12.6 - Prob. 64PCh. 12.6 - On the generalized enthalpy departure chart, the...Ch. 12.6 - Why is the generalized enthalpy departure chart...Ch. 12.6 - Prob. 67PCh. 12.6 - Prob. 68PCh. 12.6 - Prob. 69PCh. 12.6 - Prob. 70PCh. 12.6 - Prob. 71PCh. 12.6 - Prob. 72PCh. 12.6 - Prob. 73PCh. 12.6 - Prob. 75PCh. 12.6 - Propane is compressed isothermally by a...Ch. 12.6 - Prob. 78PCh. 12.6 - Prob. 80RPCh. 12.6 - Starting with the relation dh = T ds + vdP, show...Ch. 12.6 - Show that cv=T(vT)s(PT)vandcp=T(PT)s(vT)PCh. 12.6 - Temperature and pressure may be defined as...Ch. 12.6 - For ideal gases, the development of the...Ch. 12.6 - Prob. 85RPCh. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - Prob. 88RPCh. 12.6 - Estimate the cpof nitrogen at 300 kPa and 400 K,...Ch. 12.6 - Prob. 90RPCh. 12.6 - Prob. 91RPCh. 12.6 - An adiabatic 0.2-m3 storage tank that is initially...Ch. 12.6 - Prob. 93RPCh. 12.6 - Methane is to be adiabatically and reversibly...Ch. 12.6 - Prob. 96RPCh. 12.6 - Prob. 98RPCh. 12.6 - Prob. 99RPCh. 12.6 - Prob. 100FEPCh. 12.6 - Consider the liquidvapor saturation curve of a...Ch. 12.6 - Prob. 102FEPCh. 12.6 - For a gas whose equation of state is P(v b) = RT,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A rigid vessel contains 4.45lb,m of steam at 6.25 MPa and 350°K. Determine its enthalpy in kJ using steam tables only.arrow_forwardA closed, rigid tank consists of 10 lbmol of carbon dioxide at 14.7 psia and 500 R. The air is heated until its temperature becomes 1500 R. Neglect changes in kinetic energy and potential energy. Modeling carbon dioxide as an ideal gas (Use Table A-23E), determine (i) the change in specific enthalpy, and internal energy in Btu/lbmol. (ii)the heat transfer, in Btu, during the process.arrow_forward5 kg of H₂O are contained in a closed rigid tank at an initial pressure of 2000 kPa and quality of 50%. Heat transfer occurs until the tank contains only saturated vapour. Determine the volume of the tank, in m^3, and final pressure.arrow_forward
- 6. A closed rigid container with a volume of 0.5 m^3 has hydrogen at an initial pressure of 100 kPa and temperature of 20 c. While the system is heated to 200 c, the hydrogen behaves as an ideal gas. By using the specific heat at constant volume of 10.1919 kJ/(kg*K), but without making any additional assumptions, determine the total heat transferred. Present your answer in kJ using 5 significant figures. I know it is not 2.44x10^3kj can you please explain this problem? Thanks!arrow_forwardA 2.170-kg steam-water mixture at 1.0 MPa is contained in an inflexible tank. Heat is added until the pressure rises to 3.5 MPa and the temperature to 400°C. Determine the heat added in kJ. Use steam tables of Keenan et alarrow_forwardA diving air tank bottle with volume 11.37lt contains 2.4kgr of N2 and 0.6 kgr of 02. Calculate the pressure of the vessel at temperature 300K. The molecular weight of nitrogen (N2) is 28 kgr/kmol and the molecular weight of oxygen is 32 kgr/kmol. The ideal gas constant is 8.314 kJ/(kmol.K). Provide your answer in bars (105Pa).arrow_forward
- R-134a at 1.4 MPa has a specific volume of 0.02000 m³/kg. Determine the temperature of the R-134a based on: (a) The tables of data, (b) The ideal gas equation of state, and (c) The generalized compressibility chart. (d) Compare the result in (b) to the result in (a) and determine the percentage error. (e) Compare the result in (c) to the results in (a) and determine the percentage error.arrow_forwardConsider air as an ideal gas at 325 K and 0.865 m³/kg. Using total differential relations, determine the change in pressure, in kPa, corresponding to an increase of 5% in temperature while the specific volume is kept constant.arrow_forwardA 2-m3 tank holds a two-phase liquid–vapor mixture of carbon dioxide at -17°C. The quality of the mixture is 20.0%.For saturated carbon dioxide at -17°C, vf = 0.9827 x 10-3 m3/kg and vg = 1.756 x 10-2 m3/kg.Determine the masses of saturated liquid and saturated vapor, each in kg.What is the percent of the total volume occupied by saturated liquid?arrow_forward
- Calculate the specific enthalpy of saturated liquid-vapour water at 25°C for a quality of x=87.1%. Take hf=104.89kJ kg-1 and hg=2442.3kJ kg-1. Give your answer in kJ kg-1.arrow_forwardA rigid container contains 0.29 kg of hot saturated vapour at an unknown initial pressure P1. The container is cooled and the temperature drops to 98°C. It is found that the contents of the container now (at 98°C) are a mixture with quality 0.27. Calculate the amount of energy that was removed from the container, in KJ. Neglect kinetic and potential energy changes. Note that the reported heat transfer must be negative because energy is leaving the container.arrow_forwardA 1-m3 tank holds a two-phase liquid–vapor mixture of carbon dioxide at -17°C. The quality of the mixture is 40.0%. For saturated carbon dioxide at -17°C, vf = 0.9827 x 10-3 m3/kg and vg = 1.756 x 10-2 m3/kg. Determine the masses of saturated liquid and saturated vapor, each in kg. What is the percent of the total volume occupied by saturated liquid?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License