Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.6, Problem 5P
Consider air at 350 K and 0.75 m3/kg. Using Eq. 12–3, determine the change in pressure corresponding to an increase of (a) 1 percent in temperature at constant specific volume, (b) 1 percent in specific volume at constant temperature, and (c) 1 percent in both the temperature and specific volume.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Air is cooled during an isobaric process
3.7 atm from an initial specific volume of 1.35 m3/kg to a final
density of 1.286 kg/m3. For a mass of 2.19 kg, determine the change in enthalpy in kJ.
Five kilograms of air is contained in a closed rigid container. An amount of 1,200 kJ of heat is added until the air reaches 650 K.
Determine
The initial temperature of air, in K
The final pressure, in kPa if the initial pressure of air is 300 kPa
316.02K / 617.05 kPa
Air is cooled during an isobaric process at 4.51 atm]from an initial specific volume of 1.57 m³/kg to a final density of 1.206 kg/m³. For a mass of 2.76 kg, determine the change in enthalpy in kJ.
Chapter 12 Solutions
Thermodynamics: An Engineering Approach
Ch. 12.6 - What is the difference between partial...Ch. 12.6 - Consider a function z(x, y) and its partial...Ch. 12.6 - Prob. 3PCh. 12.6 - Conside the function z(x, y), its partial...Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - 12–7 Nitrogen gas at 400 K and 300 kPa behaves as...Ch. 12.6 - Nitrogen gas at 800 R and 50 psia behaves as an...Ch. 12.6 - Prob. 9PCh. 12.6 - Using the equation of state P(v a) = RT, verify...
Ch. 12.6 - Prob. 11PCh. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Prob. 14PCh. 12.6 - Prob. 15PCh. 12.6 - Prob. 16PCh. 12.6 - Prob. 17PCh. 12.6 - Prove that (PT)=kk1(PT)v.Ch. 12.6 - Prob. 19PCh. 12.6 - Prob. 20PCh. 12.6 - Using the Clapeyron equation, estimate the...Ch. 12.6 - Prob. 22PCh. 12.6 - Prob. 23PCh. 12.6 - Determine the hfg of refrigerant-134a at 10F on...Ch. 12.6 - Prob. 25PCh. 12.6 - Prob. 26PCh. 12.6 - Prob. 27PCh. 12.6 - Prob. 28PCh. 12.6 - Prob. 29PCh. 12.6 - 12–30 Show that =
Ch. 12.6 - Prob. 31PCh. 12.6 - Prob. 32PCh. 12.6 - Prob. 33PCh. 12.6 - Prob. 34PCh. 12.6 - Prob. 35PCh. 12.6 - Prob. 36PCh. 12.6 - Determine the change in the internal energy of...Ch. 12.6 - Prob. 38PCh. 12.6 - Determine the change in the entropy of helium, in...Ch. 12.6 - Prob. 40PCh. 12.6 - Derive expressions for (a) u, (b) h, and (c) s for...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Show that cpcv=T(PT)V(VT)P.Ch. 12.6 - Prob. 44PCh. 12.6 - Prob. 45PCh. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the isothermal...Ch. 12.6 - Show that = ( P/ T)v.Ch. 12.6 - Prob. 49PCh. 12.6 - Prob. 50PCh. 12.6 - Show that the enthalpy of an ideal gas is a...Ch. 12.6 - Prob. 52PCh. 12.6 - Prob. 53PCh. 12.6 - The pressure of a fluid always decreases during an...Ch. 12.6 - Does the Joule-Thomson coefficient of a substance...Ch. 12.6 - Will the temperature of helium change if it is...Ch. 12.6 - Prob. 59PCh. 12.6 - Prob. 60PCh. 12.6 - 12–61E Estimate the Joule-Thomson-coefficient of...Ch. 12.6 - Prob. 62PCh. 12.6 - Consider a gas whose equation of state is P(v a)...Ch. 12.6 - Prob. 64PCh. 12.6 - On the generalized enthalpy departure chart, the...Ch. 12.6 - Why is the generalized enthalpy departure chart...Ch. 12.6 - Prob. 67PCh. 12.6 - Prob. 68PCh. 12.6 - Prob. 69PCh. 12.6 - Prob. 70PCh. 12.6 - Prob. 71PCh. 12.6 - Prob. 72PCh. 12.6 - Prob. 73PCh. 12.6 - Prob. 75PCh. 12.6 - Propane is compressed isothermally by a...Ch. 12.6 - Prob. 78PCh. 12.6 - Prob. 80RPCh. 12.6 - Starting with the relation dh = T ds + vdP, show...Ch. 12.6 - Show that cv=T(vT)s(PT)vandcp=T(PT)s(vT)PCh. 12.6 - Temperature and pressure may be defined as...Ch. 12.6 - For ideal gases, the development of the...Ch. 12.6 - Prob. 85RPCh. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - Prob. 88RPCh. 12.6 - Estimate the cpof nitrogen at 300 kPa and 400 K,...Ch. 12.6 - Prob. 90RPCh. 12.6 - Prob. 91RPCh. 12.6 - An adiabatic 0.2-m3 storage tank that is initially...Ch. 12.6 - Prob. 93RPCh. 12.6 - Methane is to be adiabatically and reversibly...Ch. 12.6 - Prob. 96RPCh. 12.6 - Prob. 98RPCh. 12.6 - Prob. 99RPCh. 12.6 - Prob. 100FEPCh. 12.6 - Consider the liquidvapor saturation curve of a...Ch. 12.6 - Prob. 102FEPCh. 12.6 - For a gas whose equation of state is P(v b) = RT,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Air at 2000 K with a specific volume of 0.6 m3/kg is expanded isentropically until the temperature drops to 1000 K. Determine the final specific volume, in m3/kg. Assume that specific heats vary with temperature. Report your result to two decimal places using rounding.arrow_forwardA piston-cylinder assembly contains 20 kg of ammonia, initially at 80 kPa and -10°C. The ammonia is compressed to a pressure of 550 kPa. During the process, the pressure and specific volume are related by po¹¹ = constant. Determine the work and the heat transfer, in kJ. Determine work Work can be evaluated: as equal to the pressure times (final specific volume minus initial specific volume). O by integrating volume from the initial pressure to the final pressure. O as equal to the pressure times (initial volume minus final volume). as the integral of pdV from the initial volume to the final volume. eTextbook and Media Save for Later Assistance Used Attempts: 0 of 5 used Determine specific internal energy The parts of this question must be completed in order. This part will be available when you complete the part above. Calculate heat transfer The parts of this question must be completed in order. This part will be available when you complete the part above. Calculate work The parts of…arrow_forwardDetermine internal energy of steam if its enthalpy, pressure and specific volumes are 2848 kJ/kg, 12MPa and 0.017 m3/kg.arrow_forward
- Determine the temperature, quality, and internal energy of 5 kg of water in a rigid container of volume 1 m3 at a pressure of 2 bar.arrow_forwardOne kg of steam at 124 degree Celsius and 10% moisture undergoes a constant volume process until the pressure becomes 0.28 MPa. Determine the following(a) final temperature(b) Q in KJ(c) at what pressure was the final condition saturated?arrow_forwardA closed, rigid tank is filled with water. Initially, the tank holds 9.9 ft3 of saturated vapor and 0.1 ft3 of saturated liquid, each at 212°F. The water is heated until the tank contains only saturated vapor. For the water, determine (a) the quality at the initial state, (b) the temperature at the final state, in °F, and (c) the heat transfer, in Btu. Kinetic and potential energy effects can be ignored.arrow_forward
- What are the values of Cp and Cv (in kJ/kg-K), given that for a certain ideal gas, R is 0.277 kJ/kg-K andk is 1.384?arrow_forwardDetermine the temperature, in °C, of R-134a at a pressure of 200 kPa with a specific enthalpy of 200 kJ/kg.arrow_forwardthe specific volume of water at 2000 kPa and 220 °C 0.1100 m./kg 0.01005 m/kg 0.1022 m/kg 0.131061 m/kgarrow_forward
- Determine the volume change, in ft3, when 1 lb of water, initially saturated liquid, is heated to saturated vapor while pressure remains constant at 330 lbf/in.² ΔV = i 1.23587 ft³arrow_forwardA 2.43 kg of air at 23.65 C underwent a polytropic process (n = 1.5) wherein its initial pressure of 54.89 kPa was doubled. Determine the change in internal energy (kJ) of the system. Consider the individual gas constant, and specific heat at constant pressure of air as 0.287 kJ/kg-K and 1.00 kJ/kg-K, respectively.arrow_forwardFor a certain ideal gas of 2.5 kg-mass with R = 0.296 kJ/kg-K and k = 1.375, determine the change in enthalpy for a temperature change of 17oC. Answer in 2 decimal places.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics - Thermodynamics: (21 of 22) Change Of State: Process Summary; Author: Michel van Biezen;https://www.youtube.com/watch?v=AzmXVvxXN70;License: Standard Youtube License