![Bundle: General, Organic, and Biological Chemistry, 7th + OWLv2 Quick Prep for General Chemistry, 4 terms (24 months) Printed Access Card](https://www.bartleby.com/isbn_cover_images/9781305717534/9781305717534_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
The unsubstituted cycloalkane that contains six carbon atoms will be solid, liquid, or gas at room temperature has to be given.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Alkanes and cycloalkanes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkanes and cycloalkanes do not get solubilized in water. In other words, alkanes and cycloalkanes are insoluble in water.
Regarding density, alkanes and cycloalkanes have density lower than water. When alkanes and cycloalkanes are mixed with water, two layers are formed which is a result of insolubility. Alkanes and cycloalkanes are present on top of water layer which is due to lesser density.
Boiling point of alkanes and cycloalkanes increase with an increase in carbon‑chain length or the ring size. When considering the continuous‑chain alkanes, the boiling point of alkanes increases about
When branching happens in the carbon chain, it lowers the boiling point of alkanes. In simple words, unbranched alkanes have more boiling point than branched alkanes with the same number of carbon atoms.
Cycloalkanes have higher boiling point compared to noncyclic alkanes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropane and cyclobutane are gases at room temperature. Cyclopentane to cyclooctane are liquids at room temperature.
(b)
Interpretation:
The unsubstituted cycloalkane that contains six carbon atoms is more or less dense than water has to be given.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Alkanes are linear chain saturated hydrocarbons and cycloalkanes are cyclic carbon chain saturated hydrocarbons. They both occur naturally.
Alkanes and cycloalkanes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkanes and cycloalkanes do not get solubilized in water. In other words, alkanes and cycloalkanes are insoluble in water.
Regarding density, alkanes and cycloalkanes have density lower than water. When alkanes and cycloalkanes are mixed with water, two layers are formed which is a result of insolubility. Alkanes and cycloalkanes are present on top of water layer which is due to lesser density.
Boiling point of alkanes and cycloalkanes increase with an increase in carbon‑chain length or the ring size. When considering the continuous‑chain alkanes, the boiling point of alkanes increases about
When branching happens in the carbon chain, it lowers the boiling point of alkanes. In simple words, unbranched alkanes have more boiling point than branched alkanes with the same number of carbon atoms.
Cycloalkanes have higher boiling point compared to noncyclic alkanes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropane and cyclobutane are gases at room temperature. Cyclopentane to cyclooctane are liquids at room temperature.
(c)
Interpretation:
The unsubstituted cycloalkane that contains six carbon atoms soluble or insoluble in water has to be given.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Alkanes are linear chain saturated hydrocarbons and cycloalkanes are cyclic carbon chain saturated hydrocarbons. They both occur naturally.
Alkanes and cycloalkanes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkanes and cycloalkanes do not get solubilized in water. In other words, alkanes and cycloalkanes are insoluble in water.
Regarding density, alkanes and cycloalkanes have density lower than water. When alkanes and cycloalkanes are mixed with water, two layers are formed which is a result of insolubility. Alkanes and cycloalkanes are present on top of water layer which is due to lesser density.
Boiling point of alkanes and cycloalkanes increase with an increase in carbon‑chain length or the ring size. When considering the continuous‑chain alkanes, the boiling point of alkanes increases about
When branching happens in the carbon chain, it lowers the boiling point of alkanes. In simple words, unbranched alkanes have more boiling point than branched alkanes with the same number of carbon atoms.
Cycloalkanes have higher boiling point compared to noncyclic alkanes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropane and cyclobutane are gases at room temperature. Cyclopentane to cyclooctane are liquids at room temperature.
(d)
Interpretation:
The unsubstituted cycloalkane that contains six carbon atoms will be flammable or inflammable has to be given.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Alkanes are linear chain saturated hydrocarbons and cycloalkanes are cyclic carbon chain saturated hydrocarbons. They both occur naturally.
Alkanes and cycloalkanes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkanes and cycloalkanes do not get solubilized in water. In other words, alkanes and cycloalkanes are insoluble in water.
Regarding density, alkanes and cycloalkanes have density lower than water. When alkanes and cycloalkanes are mixed with water, two layers are formed which is a result of insolubility. Alkanes and cycloalkanes are present on top of water layer which is due to lesser density.
Boiling point of alkanes and cycloalkanes increase with an increase in carbon‑chain length or the ring size. When considering the continuous‑chain alkanes, the boiling point of alkanes increases about
When branching happens in the carbon chain, it lowers the boiling point of alkanes. In simple words, unbranched alkanes have more boiling point than branched alkanes with the same number of carbon atoms.
Cycloalkanes have higher boiling point compared to noncyclic alkanes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropane and cyclobutane are gases at room temperature. Cyclopentane to cyclooctane are liquids at room temperature.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 12 Solutions
Bundle: General, Organic, and Biological Chemistry, 7th + OWLv2 Quick Prep for General Chemistry, 4 terms (24 months) Printed Access Card
- Predict the major organic product(s), if any, of the following reactions. Assume all reagents are in excess unless otherwise indicated.arrow_forwardHow many signals would you expect to find in the 1 H NMR spectrum of each given compound? Part 1 of 2 2 Part 2 of 2 HO 5 ☑ Х IIIIII***** §arrow_forwardA carbonyl compound has a molecular ion with a m/z of 86. The mass spectra of this compound also has a base peak with a m/z of 57. Draw the correct structure of this molecule. Drawingarrow_forward
- Can you draw this using Lewis dot structures and full structures in the same way they are so that I can better visualize them and then determine resonance?arrow_forwardSynthesize the following compound from cyclohexanol, ethanol, and any other needed reagentsarrow_forwardFor a titration of 20.00 mL of 0.0500 M H2SO4 with 0.100 M KOH, calculate the pH at each of the following volume of KOH used in the titration: 1) before the titration begin; 2) 10.00 mL; 3) 20.00 mL; 4) 30.00 mL. Ka2 = 1.20×10-2 for H2SO4.arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s) Be sure to account for all bond-breaking and bond-making steps Problem 73 of 10 Drawing Amows ro HO Donearrow_forward12. Synthesize the following target molecules (TMs) using the specified starting materials. .CI a) HO3S SM TM b) HO- SMarrow_forwardFor a titration of 20.00 mL of 0.0500 M H2SO4 with 0.100 M KOH, calculate the pH at each of the following volume of KOH used in the titration: 1) before the titration begin; 2) 10.00 mL; 3) 20.00 mL; 4) 30.00 mL. Ka2 = 1.20×10-2 for H2SO4.arrow_forward
- Write the systematic name of each organic molecule: structure name show work. don't give Ai generated solutionarrow_forwardShow work with explanation needed. Don't give Ai generated solutionarrow_forwardA Elschboard Part of SpeechT-D Alt Leaming App app.aktiv.com Curved arrows are used to illustrate the flow of electrons. Using the provided resonance structures, draw the curved electron- pushing arrows to show the interconversion between resonance hybrid contributors. Be sure to account for all bond-breaking and bond-making steps. Include all lone pairs and formal charges in the structures. Problem 45 of 10 I Select to Add Arrows N Please selarrow_forward
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305081079/9781305081079_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305960060/9781305960060_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399692/9781337399692_smallCoverImage.gif)