Chemistry: The Molecular Nature of Matter
7th Edition
ISBN: 9781118516461
Author: Neil D. Jespersen, Alison Hyslop
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 4PE
People living in arid, dry, regions can cool their house using evaporative cooling. Use the kinetic molecular theory to explain what factors make this method of cooling less useful in more temperate climates. (Hint: Recall the explanation of heat transfer in Section 6.2.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please solve the questions comprehensively. Thank you!
Compare the effect of drinking 250-ml of ice water with the cooling effect of sweating out 250-ml of water.
Calculate the amount of heat (joules) required to convert 200g of ice cubes (0°C) to gas at 100°C.
Which of the following statements is true?
Specific heat capacity is dependent on the amount of the substance
Specific heat is characterized as a function of temperature
Latent heat of fusion is dependent on temperature ?
Latent heat of fusion is usually greater than the latent heat of vaporization.
22) Evaporation of sweat requires energy and thus take excess heat away from the body. Some of the water that you
drink may eventually be converted into sweat and evaporate. If you drink a 20-ounce bottle of water (590g) that
had been in the refrigerator at 3.8 °C, how much heat is needed to convert all of that water into sweat and then to
vapor? (Note: Your body temperature is 36.6 °C. For the purpose of solving this problem, assume that the therm
properties of sweat are the same as for water.
Us, liquid water =
4.184 J/g °C
Cs, steam= 1.84 J/g °C
C3, ice = 2.09 /g °C
AHvap = 40.67 kJ/mol at 36.6 °C.
%3D
A Hus = 6.01 kJ/mol
A) 1420 kJ
B) 81 kJ
C) 1150 kJ
23) Based on the graph shown below, choose the correct statement about sublimation?
Gas
Liquid
sublimation
Solid
A) Sublimation is a phase transition from solid to gas
B) According to Hess Law, AHsub can be calculated as sum of AHvap and AHUS
C) Both A and B are correct
Chapter 11 Solutions
Chemistry: The Molecular Nature of Matter
Ch. 11 - Prob. 1PECh. 11 - List the following in order of their boiling...Ch. 11 - Propylamine and trimethylamine have the same...Ch. 11 - People living in arid, dry, regions can cool their...Ch. 11 - Use the kinetic molecular theory to explain why...Ch. 11 - Considering Figure 11.24, in which direction...Ch. 11 - Suppose a liquid is in equilibrium with its vapor...Ch. 11 - The Dead Sea is approximately 1300 ft below sea...Ch. 11 - The atmospheric pressure at the summit of Mt....Ch. 11 - Benzene has a boiling point of 80.1C, and a...
Ch. 11 - Steam can cause more severe bums than water, even...Ch. 11 - The equilibrium line from point B to D in Figure...Ch. 11 - What phase changes will occur if water at 20C and...Ch. 11 - Prob. 14PECh. 11 - Use Le Chtelier's principle to predict how a...Ch. 11 - Prob. 16PECh. 11 - At 0.00C, hexane, C6H14, has a vapor pressure of...Ch. 11 - Prob. 18PECh. 11 - Chromium crystallizes in a body-centered cubic...Ch. 11 - What is the ratio of the ions in the unit cell of...Ch. 11 - Polonium is the only metal known to crystallize in...Ch. 11 - Use the data in the previous Practice Exercise to...Ch. 11 - Stearic acid is an organic acid that has a chain...Ch. 11 - Boron nitride, which has the empirical formula BN,...Ch. 11 - Crystals of elemental sulfur are easily crushed...Ch. 11 - 11.1 Why are the intermolecular attractive forces...Ch. 11 - Compare the behavior of gases, liquids, and solids...Ch. 11 - Prob. 3RQCh. 11 - Why do intermolecular attractions weaken as the...Ch. 11 - Prob. 5RQCh. 11 - Define polarizability. How does this property...Ch. 11 - Prob. 7RQCh. 11 - 11.8 Which nonmetals, besides hydrogen, are...Ch. 11 - Prob. 9RQCh. 11 - Which would give a stronger iondipole interaction...Ch. 11 - Prob. 11RQCh. 11 - Prob. 12RQCh. 11 - Intermolecular Forces and Physical...Ch. 11 - Prob. 14RQCh. 11 - Intermolecular Forces and Physical Properties Name...Ch. 11 - Prob. 16RQCh. 11 - Prob. 17RQCh. 11 - Prob. 18RQCh. 11 - Prob. 19RQCh. 11 - Prob. 20RQCh. 11 - Intermolecular Forces and Physical...Ch. 11 - Prob. 22RQCh. 11 - Prob. 23RQCh. 11 - Prob. 24RQCh. 11 - Prob. 25RQCh. 11 - Prob. 26RQCh. 11 - Prob. 27RQCh. 11 - Prob. 28RQCh. 11 - Prob. 29RQCh. 11 - Changes of State and Dynamic Equilibrium What...Ch. 11 - Prob. 31RQCh. 11 - Changes of State and Dynamic Equilibrium
11.32 Why...Ch. 11 - Changes of State and Dynamic Equilibrium
11.33...Ch. 11 - Changes of State and Dynamic Equilibrium
11.34....Ch. 11 - Prob. 35RQCh. 11 - Prob. 36RQCh. 11 - Vapor Pressures of Liquids and Solids
11.37...Ch. 11 - Prob. 38RQCh. 11 - Vapor Pressures of Liquids and Solids 11.39 What...Ch. 11 - Vapor Pressures of Liquids and Solids Why does...Ch. 11 - Vapor Pressures of Liquids and Solids Why do we...Ch. 11 - Prob. 42RQCh. 11 - Boiling Points of Liquids Why does the boiling...Ch. 11 - Boiling Points of Liquids Mt. Kilimanjaro in...Ch. 11 - Boiling Points of Liquids
11.45. When liquid...Ch. 11 - Prob. 46RQCh. 11 - Boiling Points of Liquids Butane, C4H10, has a...Ch. 11 - Boiling Points of Liquids
11.48. Why does have a...Ch. 11 - Boiling Points of Liquids An HF bond is more polar...Ch. 11 - Energy and Changes of State The following is a...Ch. 11 - Energy and Changes of State
11.51 Why is larger...Ch. 11 - Energy and Changes of State Would the heat of...Ch. 11 - Energy and Changes of State Hurricanes can travel...Ch. 11 - Energy and Changes of State Ethanol (grain...Ch. 11 - Energy and Changes of State A burn caused by steam...Ch. 11 - Energy and Changes of State
11.56 Arrange the...Ch. 11 - Prob. 57RQCh. 11 - Phase Diagrams
11.58 Define critical temperature...Ch. 11 - Phase Diagrams What is a supercritical fluid? Why...Ch. 11 - Phase Diagrams
11.60 What phases of a substance...Ch. 11 - Prob. 61RQCh. 11 - Prob. 62RQCh. 11 - Phase Diagrams Sketch a generic phase diagram that...Ch. 11 - Phase Diagrams
11.64 What is the significance of...Ch. 11 - Prob. 65RQCh. 11 - Le Chtelier's Principle and Changes of State State...Ch. 11 - Le Châtelier's Principle and Changes of...Ch. 11 - Le Chtelier's Principle and Changes of State Use...Ch. 11 - Le Chtelier's Principle and Changes of State Use...Ch. 11 - Le Châtelier's Principle and Changes of...Ch. 11 - Determining Heats of Vaporization According to the...Ch. 11 - Determining Heats of Vaporization Why can't...Ch. 11 - Determining Heats of Vaporization Why can any...Ch. 11 - Prob. 74RQCh. 11 - Prob. 75RQCh. 11 - Prob. 76RQCh. 11 - Determining the Structure of Solids What...Ch. 11 - Determining the Structure of Solids
11.78 The...Ch. 11 - The figure below illustrates the way the atoms of...Ch. 11 - Make a sketch of a layer of sodium ions and...Ch. 11 - 11.81 How do the crystal structures of copper and...Ch. 11 - Determining the Structure of Solids
11.82 What...Ch. 11 - Determining the Structure of Solids Only 14...Ch. 11 - Determining the Structure of Solids Write the...Ch. 11 - Determining the Structure of Solids Why cant...Ch. 11 - Prob. 86RQCh. 11 - Crystal Types and Physical Properties
11.87 What...Ch. 11 - Prob. 88RQCh. 11 - Prob. 89RQCh. 11 - Prob. 90RQCh. 11 - Intermolecular Forces and Physical Properties What...Ch. 11 - Intermolecular Forces and Physical Properties What...Ch. 11 - Intermolecular Forces and Physical Properties...Ch. 11 - Prob. 94RQCh. 11 - 11.95 Consider the compounds (chloroform, an...Ch. 11 - 11.96 Carbon dioxide does not liquefy at...Ch. 11 - Prob. 97RQCh. 11 - Prob. 98RQCh. 11 - Prob. 99RQCh. 11 - Prob. 100RQCh. 11 - 11.101 The following are the vapor pressures of...Ch. 11 - 11.102 The boiling points of some common...Ch. 11 - 11.103 Using the information in Problem 11.101,...Ch. 11 - 11.104 Using the information in Problem 11.102,...Ch. 11 - 11.105 What intermolecular forces must the...Ch. 11 - 11.106 What intermolecular attractions will be...Ch. 11 - Energy and Changes of State The molar heat of...Ch. 11 - Energy and Changes of State The molar heat of...Ch. 11 - *11.109 Suppose 45.0 g of water at is added to...Ch. 11 - A cube of solid benzene (C6H6) at its melting...Ch. 11 - Prob. 111RQCh. 11 - Prob. 112RQCh. 11 - Prob. 113RQCh. 11 - Prob. 114RQCh. 11 - Prob. 115RQCh. 11 - Prob. 116RQCh. 11 - Determining Heats of Vaporization
*11.117 Mercury...Ch. 11 - Prob. 118RQCh. 11 - Prob. 119RQCh. 11 - *11.120 If the vapor pressure of ethylene glycol...Ch. 11 - Determining the Structure of Solids
11.121 How...Ch. 11 - 11.122 How many copper atoms are within the...Ch. 11 - The atomic radius of nickel is 1.24 . Nickel...Ch. 11 - 11.124 Silver forms face-centered cubic crystals....Ch. 11 - Potassium ions have a radius of 133 pm, and...Ch. 11 - 11.126 The unit cell edge in sodium chloride has a...Ch. 11 - Prob. 127RQCh. 11 - Prob. 128RQCh. 11 - *11.129 Cesium chloride forms a simple cubic...Ch. 11 - 11.130 Rubidium chloride has the rock salt...Ch. 11 - Prob. 131RQCh. 11 - Crystal Types and Physical Properties Elemental...Ch. 11 - Prob. 133RQCh. 11 - Prob. 134RQCh. 11 - Prob. 135RQCh. 11 - Crystal Types and Physical Properties
11.1 36...Ch. 11 - List all of the attractive forces that exist in...Ch. 11 - 11.138 Calculate the mass of water vapor present...Ch. 11 - 11.139 Should acetone molecules be attracted to...Ch. 11 - The following thermochemical equations apply to...Ch. 11 - Melting point is sometimes used as an indication...Ch. 11 - When warm, moist air sweeps in from the ocean and...Ch. 11 - *11.143 Gold crystallizes in a face-centered cubic...Ch. 11 - Gold crystallizes with a face-centered cubic unit...Ch. 11 - Identify the type of unit cell belonging to the...Ch. 11 - Calculate the amount of empty space (in pm3) in...Ch. 11 - Silver has an atomic radius of 144 pm. What would...Ch. 11 - Potassium chloride crystallizes with the rock salt...Ch. 11 - Prob. 149RQCh. 11 - There are 270 Calories in a Hersheys* Milk...Ch. 11 - Prob. 151RQCh. 11 - *11.152 Frecze-drying is a process used to...Ch. 11 - When reporting the vapor pressure for a substance...Ch. 11 - 11.154 Supercritical is used to decaffeinate...Ch. 11 - 11.155 Freshly precipitated crystals are usually...Ch. 11 - 11.156 What are three “everyday” applications of...Ch. 11 - Prob. 157RQCh. 11 - 11.158 Galileo's thermometer is a tube of liquid...Ch. 11 - Use the Clausius-Clapeyron equation to plot the...Ch. 11 - Prob. 160RQCh. 11 - Earlier in this chapter it was noted that the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
This is to be explained how the mass of an atom and mass of one mole of an atom is related to the molar mass. C...
Chemistry: Matter and Change
For Practice 1.1
Is each change physical or chemical? Which kind of property (chemical or physical) is demonst...
Principles of Chemistry: A Molecular Approach (3rd Edition)
Look up the physical properties of several of the compounds you will be making in your lab from several differe...
The Organic Chem Lab Survival Manual: A Student's Guide to Techniques
Propose a mechanism for the biosynthesis of -terpineol from geranyl pyrophosphate.
Essential Organic Chemistry (3rd Edition)
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
One of the important ideas of thermodynamics is that energy can be transferred in the form of heat or work. Im...
Chemistry: The Central Science (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Will a closed container of water at 70 C or an open container of water at the same temperature cool faster on a cold winter day? Explain why.arrow_forwardConsider the iodine monochloride molecule, ICI. Because chlorine is more electronegative than iodine, this molecule is a dipole. How would you expect iodine monochloride molecules in the gaseous state to orient themselves with respect to each other as the sample is cooled and the molecules begin to aggregate? Sketch the orientation you would expect.arrow_forwardA special vessel (see Fig. 10.45) contains ice and supercooled water (both at 10C) connected by vapor space. Describe what happens to the amounts of ice and water as time passes.arrow_forward
- The amount of heat required to melt 2 lbs of ice is twice the amount of heat required to melt 1 lb of ice. Is this observation a macroscopic or microscopic description of chemical behavior? Explain your answer.arrow_forwardUse Figure 11.7 to estimate the boiling point of carbon tetrachloride, CCl4, under an external pressure of 250 mmHg.arrow_forwardhe enthalpy (H)of vaporization of water is about seven times larger than water’s enthalpy fusion(41kJ/molvs.6kJ/mol). What does this tell us about the relative similarities among the solid, liquid, and gaseous states of water?arrow_forward
- O ||| Use the observation in the first column to answer the question in the second column. soft C W W Microsoft Microsoft 6.52.210... OSTATES OF MATTER Understanding the connection between vapor pressure, boiling... esc The enthalpy of vaporization of Substance E is smaller than that of Substance F. observation At 1 atm pressure, Substance A boils at -47. °C and Substance B boils at -8. °C. At 72 °C, Substance C has a vapor pressure of 80. torr and Substance D has a vapor pressure of 100. torr. Explanation ! 1 Q 2 Check 9,088 W question At any temperature where both substances are liquid, which has the higher vapor pressure? 280 Substance E Substance F Neither, E and F have the same vapor pressure. It's impossible to know without more information. Which has a higher enthalpy of vaporization? Substance A Substance B Neither, A and B have the same enthalpy of vaporization. It's impossible to know without more information. Which has a higher enthalpy of vaporization? #m 3 Substance C…arrow_forwardInterpreting a heating curve.arrow_forward(a) If 83.0 g of ice at 0.0oC is placed in 235mL of water at 28.0oC, find the final temperature of water when all of the ice melts. DHfus=6.01 kJ/mol and assume for liquid water density= 1.00 g/mL HINT: you have two parts to find the heat.(remember that the heat lost must equal the heat gained). Part a- find the heat for 83 g of ice melting and then the heat for the liquid to warm up Part b- find the heat for 235 mL H2O to cool down (b) What is the interpretation/finding from this problem?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Types of Matter: Elements, Compounds and Mixtures; Author: Professor Dave Explains;https://www.youtube.com/watch?v=dggHWvFJ8Xs;License: Standard YouTube License, CC-BY