Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 11.55P
To determine
The mass flow rate for exhaust gases.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In an heat exchanger of parallel flow type, water enters at 60°C and leaves at 80°C while oil of specific gravity 0.8 enters at 250°C and leaves at 100°C. The specific heat of oil is 2.5 kJ/kg K and surrounding temperature is 300 K. Determine the loss in availability on the basis of one kg of oil flow per second.
A cross flow heat exchanger (Both fluids are mixed) Is used to heat oil in the tubes (c=1.8 kj/kg · ◦c) from 15◦c to 85◦c with a mass flow of 0.73kg/sec. blowing across the outside of the tubes is steam that enters at 130◦c and leaves at 110◦c with a mass flow of 5.3 kg/sec. The overall heat-transfer coefficient is 270 w/m2◦c and c for steam is 1.96kj/kg◦c. The surface area of the heat exchanger is 12 m2. Calculate effectiveness of this heat exchanger. (Note: Select suitable formula form formula sheet)
Q6
Kindly answer correctly.Please show all the necessary steps
Chapter 11 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 11 - In a fire-tube boiler, hot products of combustion...Ch. 11 - A shell-and-tube heat exchanger is to heat an...Ch. 11 - A steel tube (k=50W/mK) of inner and outer...Ch. 11 - A heat recovery device involves transferring...Ch. 11 - A novel design for a condenser consists of a tube...Ch. 11 - The condenser of a steam power plant...Ch. 11 - Thin-walled aluminum tubes of diameter D = 10mmare...Ch. 11 - A tinned-tube, cross-how heat exchanger is to use...Ch. 11 - Water at a rate of 45,500kg/h is heated from 80...Ch. 11 - A novel heat exchanger concept consists of a...
Ch. 11 - Prob. 11.12PCh. 11 - A process fluid having a specific heat of...Ch. 11 - A shell-and-tube exchanger (two shells, four tube...Ch. 11 - Consider the heat exchanger of Problem 11.14....Ch. 11 - The hot and cold inlet temperatures to a...Ch. 11 - A concentric tube heat exchanger of length L = 2 m...Ch. 11 - A counterflow, concentric tube heat exchanger is...Ch. 11 - Consider a concentric tube heat exchanger with an...Ch. 11 - A shell-and-tube heat exchanger must be designed...Ch. 11 - A concentric tube heat exchanger for cooling...Ch. 11 - A counterflow, concentric tube heat exchanger used...Ch. 11 - An automobile radiator may be viewed as a...Ch. 11 - Hot air for a large-scale drying operation is to...Ch. 11 - In a dairy operation, milk at a flow rate of 250...Ch. 11 - The compartment heater of an automobile...Ch. 11 - A counterflow, twin-tube heat exchanger is made...Ch. 11 - Consider a coupled shell-in-tube heat exchange...Ch. 11 - For health reasons, public spaces require the...Ch. 11 - A shell-and-tube heat exchanger (1 shell pass, 2...Ch. 11 - Saturated water vapor leaves a steam turbine at a...Ch. 11 - The human brain is especially sensitive to...Ch. 11 - Prob. 11.47PCh. 11 - A plate-tin heat exchanger is used to condense a...Ch. 11 - In a supercomputer, signal propagation delays...Ch. 11 - Untapped geothermal sites in the United States...Ch. 11 - A shell-and-tube heat exchanger consists of 135...Ch. 11 - An ocean thermal energy conversion system is...Ch. 11 - Prob. 11.55PCh. 11 - Prob. 11.56PCh. 11 - The chief engineer at a university that is...Ch. 11 - A shell-and-tube heat exchanger with one shell...Ch. 11 - Prob. 11.59PCh. 11 - Prob. 11.60PCh. 11 - Prob. 11.61PCh. 11 - Prob. 11.62PCh. 11 - A recuperator is a heat exchanger that heats air...Ch. 11 - Prob. 11.64PCh. 11 - Prob. 11.65PCh. 11 - A cross-flow heat exchanger consists of a bundle...Ch. 11 - Exhaust gas from a furnace is used to preheat the...Ch. 11 - Prob. 11.68PCh. 11 - A liquefied natural gas (LNG) regasification...Ch. 11 - Prob. 11.70PCh. 11 - A shell-and-tube heat exchanger consisting of...Ch. 11 - Prob. 11.73PCh. 11 - The power needed to overcome wind and friction...Ch. 11 - Prob. 11.75PCh. 11 - Consider a Rankine cycle with saturated steam...Ch. 11 - Consider the Rankine cycle of Problem 11.77,...Ch. 11 - Prob. 11.79PCh. 11 - Prob. 11.80PCh. 11 - Hot exhaust gases are used in a...Ch. 11 - Prob. 11.84PCh. 11 - Prob. 11.90PCh. 11 - Prob. 11S.1PCh. 11 - Prob. 11S.2PCh. 11 - Prob. 11S.3PCh. 11 - Solve Problem 11.15 using the LMTD method.Ch. 11 - Prob. 11S.5PCh. 11 - Prob. 11S.6PCh. 11 - Prob. 11S.8PCh. 11 - Prob. 11S.10PCh. 11 - Prob. 11S.11PCh. 11 - A cooling coil consists of a bank of aluminum...Ch. 11 - Prob. 11S.17P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In a large air-conditioning application, 1500 m3/min of air at 1 atm and 10◦C are tobe heated in a finned-tube heat exchanger with hot water entering the exchanger at 80◦C. The overall heat-transfer coefficient is 50 W/m2 · ◦C. Calculate the requiredarea for the heat exchanger for an exit air temperature of 37◦C and exit water temperature of 48◦Carrow_forwardIn a large air-conditioning application, 1500 m3/min of air at 1 atm and 10◦C are to be heated in a finned-tube heat exchanger with hot water entering the exchanger at 80◦C. The overall heat-transfer coefficient is 50 W/m2 · ◦C. Calculate the required area for the heat exchanger for an exit air temperature of 37◦C and exit watertemperature of 48◦C.arrow_forward100 kg / h tomato paste sterilized in the heat treatment section of an aseptic packaging unit is packaged by cooling in a cooler consisting of a tubular heat exchanger operating according to the reverse flow principle. Sterile hot tomato paste enters the cooler at 93 ° C and leaves the cooler cooled to 25 ° C . Cooling water enters the system at 20 ° C and leaves the heat exchanger by heating at 15 ° C. Calculate the cold water requirement of the coolant as the specific temperature of the tomato paste is 2.940 kJ / kg ° C and the specific temperature of the water is 4.18 kJ / kg ° C.arrow_forward
- 2- In a heat exchanger, steam of 0.08 bar and a specific steam content of 95% is condensed. 381.6 tons / h cooling water with a temperature of 10 ̊C flows in parallel connected tubers with inner / outer diameter 28/30 mm with a speed of 0.65 m / s. The heat transfer surface of the heat exchanger is 220 m2 and it has a k-value of 2200 W / (m2K) . Assume the specific heat capacity of the water 4.18 kJ / (kg K) and density 1000 kg / m3. The K-value is attributed to the outer mantle surface of the tubes. a) Calculate the outlet temperature of cooling water. b) How many tonnes of steam per hour are condensed? c) Determine the number of tubes and tube lengtharrow_forwardA heat exchanger is used to cool oil (with cp = 2.2 kJ/kg.°C) from 170 to 50°C by water (with cp = 4.18 kJ/kg.°C) that enters the heat exchanger at a rate of 2 kg/s and inlet temperature of 10°C. If the flow rate of the oil is 1.5 kg/s, determine the exit temperature of water and the heat transfer rate from the oil.arrow_forwardQ1] A shell and tube heat exchanger is used to heat water (C = 4236 J/kg. °C) from 80°C to 150°C at a rate of 12.5 kg/s by hot gas that enters the exchanger at 350°C with a rate of 20.36 kg/s. The overall heat transfer coefficient is 290 W/m² °C. The gas making 2-shell passes and the water making 4-tube passes. Calculate the heat transfer surface area (Cp (gas) = 1.04 kJ/kg.°C). heat flux: (a) byarrow_forward
- 6. A heat exchanger was installed purposely to cool 0.50 kg of gas per second. Molecular weight is 28 and k=1.32. The gas is cooled from 150 deg C to 80 deg C. Water is available at the rate of 0.30 kg/s and at a temperature of 12 deg C. Calculate the exit temperature of the water.arrow_forwardIn a double-pipe, counter-flow heat exchanger, water entering at 1.5 kg/s is heated from 25°C to 70°C as it flows thru the inner pipe. Hot oil enters the heat exchanger at 2.5 kg/s and 115°C. The convection heat transfer coefficients in the cold- and hot-sides are 100 and 50 kW/m2.°C, respectively. Calculate the required heat transfer area in m2. Take Cp= 4.18 kJ/kg.°C for water, and cp = 1.67 %3D %3D kJ/kg.°C for oil.arrow_forwardAn air-cooled condenser has an h value of 30 W/m2-K based on the air-side area. The air-side heat transfer area is 190 m2 with air entering at 27°C and leaving at 40°C. If the condensing temperature is constant at 49°C, what is the air mass flow rate in kg/s? Let Cp(air) = 1.006 kJ/kg-K. Draw and label the temperature-flow diagram. Round off your answer to three (3) decimal places.arrow_forward
- QUESTION 8 Cold water (C, = 4180 J/kg.°C) enters the tubes of a heat exchanger with 2-shell passes and 20 tube passes at 20 °C at a rate of 3 kg/s, while hot oil (C, = 2200 J/kg.°C) enters the shell at 130 °C at the same mass flow rate and leaves at 60°C. If the overall heat transfer coefficient based on the outer surface of the tube is 300 W/m².°C, determine; i. the rate of heat transfer and ii. the heat transfer surface area on the outer side of the tube.arrow_forwardMilk is flowing through a heat exchanger at a rate of 2000 kg/h. The heat exchanger supplies 111,600 kJ/h. The outlet temperature of the product is 95℃. Determine the inlet temperature of the milk. The product specific heat is 3.9kJ/(kg℃). Show PBD and complete solution.arrow_forwardHot exhaust gases are used in a finned-tube cross-flow heat exchanger to heat 2.5 kg/s of water from 35 to 85-C. The gases [cp = 1.09 kJ/kg . °C] enter at 200 and leave at 93°C. The overall heat-transfer coefficient is 180 W/m2 • °C. Calculate the area of the heat exchanger using the LMTD approach.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License