Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 11, Problem 11.53P

A shell-and-tube heat exchanger consists of 135 thin-walled tubes in a double-pass arrangement, each of12.5-mm diameter with a total surface area of 47.5  m 2 .Water (the tube-side fluid) enters the heat exchanger at 15 ° C and 6.5  kg/s and is heated by exhaust gas enteringat 200 ° C and 5  kg/s . The gas may be assumed to have the properties of atmospheric air, and the overall heattransfer coefficient is approximately 200 W/m 2 K .
(a) What are the gas and water outlet temperatures?
(b) Assuming fully developed flow, what is the tubeside convection coefficient?
(c) With all other conditions remaining the same, plotthe effectiveness and fluid outlet temperatures as afunction of the water flow rate over the range from 6 to 12 kg/s .
(d) What gas inlet temperature is required for the exchanger to supply 10 kg/s of hot water at an outlet temperature of 42 ° C , all other conditions remaining the same? What is the effectiveness forthis operating condition?

Blurred answer
Students have asked these similar questions
A feed-water heater that supplies a boiler consists of a shell-and-tube heat exchanger with one shell and two tube passes. One hundred thin-walled tubes each have a diameter of 20 mm pass and a length (per pass) of 2 m. Under normal operating conditions water enters the tubes at 10 kg/s and 290 K and is heated by condensing saturated steam at 1 atm on the outer surface of the tubes. The convection coefficient of the saturated steam is 10,000 W/m2 K. Please use NTU method to determine the water outlet temperature. Hint: (1) please use the Dittus-Boelter correlation to determine the internal convection coefficient h;; (2) Assuming thin wall tubes and ignore the conduction resistance of the tube walls; (3) Please use Table A.6 to obtain all thermo-physical properties; (4) based on Table 11.3, choose an appropriate equation to obtain ɛ from NTU. TABLE 11.3 Heat Exchanger Effectiveness Relations [5] Flow Arrangement Relation 1- exp[-NTU(1 + C)] 1+C, Parallel ow (11.28a) 1- exp[-NTU(1 – C)]…
A single-shell, four-tube-pass heat exchanger is used to cool water flowing at 14 kg.s¹ entering at 18°C using ammonia with a mass flow rate of 18 kg.s¹ and an entry temperature and pressure of -12°C and 650 kPa, absolute, respectively. The heat exchanger is to use the ammonia in the liquid form, so no evaporation can be allowed. At 620 kPa, absolute pressure, ammonia evaporates at 10.5°C. The overall heat transfer coefficient of the heat exchanger is 568 W.m2 and the heat transfer surface area is 75 m². Determine the outlet temperatures of the hot and cold streams. Identify whether the heat exchanger, operating under the conditions shown, satisfies the rec irement that the ammonia remains liquid throughout the process. Sources for any researched material properties must be properly referenced
5. Hot exhaust gases, which enter a finned-tube, cross-flow heat exchanger at 300 °C and leave at 100 °C, are used to heat pressurized water at a flow rate of 1 kg/s from 35 °C 125 °C. The specific heat of water at the average water temperature is 4197 J/kg. K. The overall heat transfer coefficient based on the gas-side surface area is Uh = 100 W/m².K. Determine the required gas-side surface area A₁ using the LMTD and & -NTU method.

Chapter 11 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 11 - Prob. 11.12PCh. 11 - A process fluid having a specific heat of...Ch. 11 - A shell-and-tube exchanger (two shells, four tube...Ch. 11 - Consider the heat exchanger of Problem 11.14....Ch. 11 - The hot and cold inlet temperatures to a...Ch. 11 - A concentric tube heat exchanger of length L = 2 m...Ch. 11 - A counterflow, concentric tube heat exchanger is...Ch. 11 - Consider a concentric tube heat exchanger with an...Ch. 11 - A shell-and-tube heat exchanger must be designed...Ch. 11 - A concentric tube heat exchanger for cooling...Ch. 11 - A counterflow, concentric tube heat exchanger used...Ch. 11 - An automobile radiator may be viewed as a...Ch. 11 - Hot air for a large-scale drying operation is to...Ch. 11 - In a dairy operation, milk at a flow rate of 250...Ch. 11 - The compartment heater of an automobile...Ch. 11 - A counterflow, twin-tube heat exchanger is made...Ch. 11 - Consider a coupled shell-in-tube heat exchange...Ch. 11 - For health reasons, public spaces require the...Ch. 11 - A shell-and-tube heat exchanger (1 shell pass, 2...Ch. 11 - Saturated water vapor leaves a steam turbine at a...Ch. 11 - The human brain is especially sensitive to...Ch. 11 - Prob. 11.47PCh. 11 - A plate-tin heat exchanger is used to condense a...Ch. 11 - In a supercomputer, signal propagation delays...Ch. 11 - Untapped geothermal sites in the United States...Ch. 11 - A shell-and-tube heat exchanger consists of 135...Ch. 11 - An ocean thermal energy conversion system is...Ch. 11 - Prob. 11.55PCh. 11 - Prob. 11.56PCh. 11 - The chief engineer at a university that is...Ch. 11 - A shell-and-tube heat exchanger with one shell...Ch. 11 - Prob. 11.59PCh. 11 - Prob. 11.60PCh. 11 - Prob. 11.61PCh. 11 - Prob. 11.62PCh. 11 - A recuperator is a heat exchanger that heats air...Ch. 11 - Prob. 11.64PCh. 11 - Prob. 11.65PCh. 11 - A cross-flow heat exchanger consists of a bundle...Ch. 11 - Exhaust gas from a furnace is used to preheat the...Ch. 11 - Prob. 11.68PCh. 11 - A liquefied natural gas (LNG) regasification...Ch. 11 - Prob. 11.70PCh. 11 - A shell-and-tube heat exchanger consisting of...Ch. 11 - Prob. 11.73PCh. 11 - The power needed to overcome wind and friction...Ch. 11 - Prob. 11.75PCh. 11 - Consider a Rankine cycle with saturated steam...Ch. 11 - Consider the Rankine cycle of Problem 11.77,...Ch. 11 - Prob. 11.79PCh. 11 - Prob. 11.80PCh. 11 - Hot exhaust gases are used in a...Ch. 11 - Prob. 11.84PCh. 11 - Prob. 11.90PCh. 11 - Prob. 11S.1PCh. 11 - Prob. 11S.2PCh. 11 - Prob. 11S.3PCh. 11 - Solve Problem 11.15 using the LMTD method.Ch. 11 - Prob. 11S.5PCh. 11 - Prob. 11S.6PCh. 11 - Prob. 11S.8PCh. 11 - Prob. 11S.10PCh. 11 - Prob. 11S.11PCh. 11 - A cooling coil consists of a bank of aluminum...Ch. 11 - Prob. 11S.17P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License