Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 11.4E
Interpretation Introduction
Interpretation:
The mass of an oscillator is to be calculated.
Concept introduction:
The Hook’s law states that the strain produced in a solid is directly proportional to the applied force on it. The classical harmonic oscillator shows repetitive motion. It follows the Hook’s law. The Hook’s law is given by,
Where,
•
•
•
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
For an electron having a one-dimensional wavefunction Y = √2π sin x in the range x = 0 to 1,
what is the probability that the electron is in the range x = 0.35 to 0.75?
. One way in which a water molecule can vibrate has a measured angular frequency of @=
3.0 × 10¹4 s 1. What is the value of ħo in eV for this system if we model it as a simple
harmonic oscillator? what are its lowest three possible energy values?
Consider a two dimensional harmonic oscillator with angular frequency ωx = 2ωy = 6.5 × 1014 rad s-1. The wavelengt of x polarized light required for the excitation of a particle from its ground state to the next allowed excited state is________× 10−6 m. (Round off to one decimal place)
(Speed of light c = 3.0 × 108 m s–1)
Chapter 11 Solutions
Physical Chemistry
Ch. 11 - Convert 3.558mdyn/A into units of N/m.Ch. 11 - Prob. 11.2ECh. 11 - Prob. 11.3ECh. 11 - Prob. 11.4ECh. 11 - Prob. 11.5ECh. 11 - Prob. 11.6ECh. 11 - Prob. 11.7ECh. 11 - Prob. 11.8ECh. 11 - Prob. 11.9ECh. 11 - Prob. 11.10E
Ch. 11 - Prob. 11.11ECh. 11 - Prob. 11.12ECh. 11 - a For a pendulum having classical frequency of...Ch. 11 - Prob. 11.14ECh. 11 - The OH bond in water vibrates at a frequency of...Ch. 11 - Show that 2 and 3 for the harmonic oscillator are...Ch. 11 - Prob. 11.17ECh. 11 - Prob. 11.18ECh. 11 - Prob. 11.19ECh. 11 - Use the expression for 1 in equations 11.17 and...Ch. 11 - Prob. 11.21ECh. 11 - Prob. 11.22ECh. 11 - Consider Figure 11.4 and choose the correct...Ch. 11 - Based on the trend shown in Figure 11.5, draw the...Ch. 11 - Prob. 11.25ECh. 11 - Prob. 11.26ECh. 11 - Prob. 11.27ECh. 11 - Prob. 11.28ECh. 11 - Prob. 11.29ECh. 11 - Prob. 11.30ECh. 11 - Compare the mass of the electron, me, with a the...Ch. 11 - Reduced mass is not reserved only for atomic...Ch. 11 - Prob. 11.33ECh. 11 - An OH bond has a frequency of 3650cm1. Using...Ch. 11 - Prob. 11.35ECh. 11 - Prob. 11.36ECh. 11 - Prob. 11.37ECh. 11 - Prob. 11.38ECh. 11 - Prob. 11.39ECh. 11 - What are the energies and angular momenta of the...Ch. 11 - Prob. 11.41ECh. 11 - A 25-kg child is on a merry-go-round/calliope,...Ch. 11 - Prob. 11.43ECh. 11 - a Using the expression for the energy of a 2-D...Ch. 11 - Prob. 11.45ECh. 11 - Prob. 11.46ECh. 11 - Prob. 11.47ECh. 11 - The quantized angular momentum is choose one:...Ch. 11 - Prob. 11.49ECh. 11 - Prob. 11.50ECh. 11 - Prob. 11.51ECh. 11 - Can you evaluate r for the spherical harmonic Y22?...Ch. 11 - Show that 1,0 and 1,1 for 3-D rotational motion...Ch. 11 - Prob. 11.54ECh. 11 - Prob. 11.55ECh. 11 - a Using the he expression for the energy of a 3-D...Ch. 11 - Prob. 11.57ECh. 11 - In exercise 11.57 regarding C60, what are the...Ch. 11 - Draw the graphical representations see Figure...Ch. 11 - Prob. 11.60ECh. 11 - What is the physical explanation of the difference...Ch. 11 - List the charges on hydrogen-like atoms whose...Ch. 11 - Prob. 11.63ECh. 11 - Prob. 11.64ECh. 11 - Prob. 11.65ECh. 11 - Calculate the difference between the Bohr radius...Ch. 11 - To four significant figures, the first four lines...Ch. 11 - What would the wavelengths of the Balmer series...Ch. 11 - Construct an energy level diagram showing all...Ch. 11 - Prob. 11.70ECh. 11 - What is the degeneracy of an h subshell? An n...Ch. 11 - What is the numerical value of the total angular...Ch. 11 - What are the values of E, L, and Lz for an F8+...Ch. 11 - Prob. 11.74ECh. 11 - Why does the wavefunction 4,4,0 not exist?...Ch. 11 - Prob. 11.76ECh. 11 - What is the probability of finding an electron in...Ch. 11 - What is the probability of finding an electron in...Ch. 11 - Prob. 11.79ECh. 11 - Prob. 11.80ECh. 11 - State how many radial, angular, and total nodes...Ch. 11 - Prob. 11.82ECh. 11 - Prob. 11.83ECh. 11 - Verify the specific value of a, the Bohr radius,...Ch. 11 - Prob. 11.85ECh. 11 - Prob. 11.86ECh. 11 - Evaluate Lz for 3px, Compare it to the answer in...Ch. 11 - Calculate V for 1s of the H atom and compare it to...Ch. 11 - Prob. 11.89ECh. 11 - Prob. 11.90ECh. 11 - Prob. 11.91ECh. 11 - Prob. 11.92ECh. 11 - Graph the first five wavefunctions for the...Ch. 11 - Prob. 11.94ECh. 11 - Set up and evaluate numerically the integral that...Ch. 11 - Prob. 11.96E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Show that the value of the Rydberg constant per photon, 2.179 1018 J, is equivalent to 1312 kJ/mol photons.arrow_forwardDraw, label, and explain the functions of the parts of a spectroscope.arrow_forward6.9 If a string of decorative lights includes bulbs with wave-lengths of 480, 580, and 700 mm, what are the frequencies of the lights? Use Figure 6.6 to determine which colors are in the set.arrow_forward
- The Lyman series of spectral lines for the H atom, in the ultraviolet region, arises from transitions from higher levels to n = 1. Calculate the frequency and wavelength of the least energetic line in this series.arrow_forwardList some unexplainable phenomena from the classical science and describe what could not be explained about them at the time.arrow_forwardThe wavefunction for the motion of a particle on a ring is of the form ψ = Neimlϕ. Evaluate the normalization constant, N.arrow_forward
- Consider again the system in quizzes 1 and 2, namely a particle moving in one dimension described by the normalized wavefunction (x) = 30 1 (а — х) for 0 a . а Determine the expectation value () for the particle.arrow_forwardCalculate the zero-point energy of a harmonic oscillator consisting of a particle of mass 2.33 × 10−26 kg and force constant 155 N m−1.arrow_forwardThe wave function for the ground state of the harmonic oscillator is Vo(x) = Ce-[mw/(2ħ)]x² where C is an arbitrary constant, ħ is Planck's constant divided by 2π, m is the mass of the particle, W = ✓k/m, and k is the "spring constant" for the harmonic oscillator. Part A Normalize this wave function. What is the (positive) value of C once this wave function is normalized? You will need the formula Se -∞ Express your answer in terms of w, m, ħ, and T. ► View Available Hint(s) C = 17 ΑΣΦ xa Xh عات a √x vx 18 X> IXI -ax² X.10n X = ? wwwwwwwwww √. aarrow_forward
- For a certain harmonic oscillator of effective mass 1.33 × 10−25 kg, the difference in adjacent energy levels is 4.82 zJ. Calculate the force constant of the oscillator.arrow_forward2. Calculate the amount of energy required to go from the ground state to the first excited state of an electron moving in a circular orbit with a radius of 100 pm. 3. The wavefunction of a particle on a ring can also be written in terms of sines and cosines as Y (4) = eimiø = cos(m¡4) + i sin(m¡4). How many nodes exist in the real part of the wavefunction for m=2 and m=4? At what values of p are they located?arrow_forwardConsider a single particle with rest mass m residing in a one-dimensional space, x. This particle experiences a potential energy V(x) = ∞ for x a, and a potential energy V(x) = 0 for 0 < x < a. The solutions to the Schrödinger Equation for this system are 12. 2 Vn(x) : sin a where n is the state's quantum number. Show that the ground state wave function is normalized.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning