Physical Chemistry
Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
bartleby

Concept explainers

Question
Book Icon
Chapter 11, Problem 11.14E
Interpretation Introduction

(a)

Interpretation:

The energy difference in J between quantized energy levels for a hydrogen atom bonded to a surface acting as harmonic oscillator having classical frequency of 6.000×1013s1 is to be calculated.

Concept introduction:

The energy of the harmonic oscillator is given by,

En=(n+12)hv

Where,

E is the energy.

n is the quantum number.

h is the Planck’s constant.

v is the frequency.

The total energy of the harmonic oscillator depends on the classical frequency and the integer n of the system. The energy values are quantized as the energy values can be determined by this equation and n can take only integer values between 0 to infinity.

Interpretation Introduction

(b)

Interpretation:

The wavelength of light that must be absorbed by the hydrogen atom to go from one level to another is to be calculated.

Concept introduction:

The energy of the harmonic oscillator is given by,

En=(n+12)hv

Where,

E is the energy.

n is the quantum number.

h is the Planck’s constant.

v is the frequency.

The total energy of the harmonic oscillator depends on the classical frequency and the integer n of the system. The energy values are quantized as the energy values can be determined by this equation and n can take only integer values between 0 to infinity.

Interpretation Introduction

(c)

Interpretation:

The region of the electromagnetic spectrum, to which the wavelength of light that must be absorbed by the hydrogen atom to go from one level to another belongs, is to be predicted.

Concept introduction:

Electromagnetic spectrum is the classification of the electromagnetic radiation according to their frequencies and wavelengths. This spectrum consists of gamma rays, X-rays, ultraviolet rays, visible region, microwaves and radio waves.

Interpretation Introduction

(d)

Interpretation:

An explanation of the results of parts a and b on the basis of the state of science in the early twentieth century is to be stated.

Concept introduction:

The energy of the harmonic oscillator is given by,

En=(n+12)hv

Where,

E is the energy.

n is the quantum number.

h is the Planck’s constant.

v is the frequency.

The total energy of the harmonic oscillator depends on the classical frequency and the integer n of the system. The energy values are quantized as the energy values can be determined by this equation and n can take only integer values between 0 to infinity.

Blurred answer
Students have asked these similar questions
Calculate the de Broglie wavelength of (i) a mass of 1.0 g travelling at 1.0 cm s−1; (ii) the same, travelling at 100 km s−1; (iii) a He atom travelling at 1000 m s−1 (a typical speed at room temperature).
Quantum mechanics predicts that the energy of the ground state of the H atom is –13.6 eV. Insight into the magni- tude of this quantity is gained by considering several methods by which it can be measured. (a) Calculate the longest wavelength of light that will ion- ize H atoms in their ground state. (b) Assume the atom is ionized by collision with an elec- tron that transfers all its kinetic energy to the atom in the ionization process. Calculate the speed of the electron before the collision. Express your answer in meters per second (m s-') and miles per hour (miles h-1). (c) Calculate the temperature required to ionize a H atom in its ground state by thermal excitation. (Hint: Recall the criterion for thermal excitation of an oscillator in Planck's theory of blackbody radiation is that hv z kµT.)
Consider a fictitious one-dimensional system with one electron.The wave function for the electron, drawn below, isψ (x)= sin x from x = 0 to x = 2π. (a) Sketch the probabilitydensity, ψ2(x), from x = 0 to x = 2π. (b) At what value orvalues of x will there be the greatest probability of finding theelectron? (c) What is the probability that the electron willbe found at x = π? What is such a point in a wave functioncalled?

Chapter 11 Solutions

Physical Chemistry

Ch. 11 - Prob. 11.11ECh. 11 - Prob. 11.12ECh. 11 - a For a pendulum having classical frequency of...Ch. 11 - Prob. 11.14ECh. 11 - The OH bond in water vibrates at a frequency of...Ch. 11 - Show that 2 and 3 for the harmonic oscillator are...Ch. 11 - Prob. 11.17ECh. 11 - Prob. 11.18ECh. 11 - Prob. 11.19ECh. 11 - Use the expression for 1 in equations 11.17 and...Ch. 11 - Prob. 11.21ECh. 11 - Prob. 11.22ECh. 11 - Consider Figure 11.4 and choose the correct...Ch. 11 - Based on the trend shown in Figure 11.5, draw the...Ch. 11 - Prob. 11.25ECh. 11 - Prob. 11.26ECh. 11 - Prob. 11.27ECh. 11 - Prob. 11.28ECh. 11 - Prob. 11.29ECh. 11 - Prob. 11.30ECh. 11 - Compare the mass of the electron, me, with a the...Ch. 11 - Reduced mass is not reserved only for atomic...Ch. 11 - Prob. 11.33ECh. 11 - An OH bond has a frequency of 3650cm1. Using...Ch. 11 - Prob. 11.35ECh. 11 - Prob. 11.36ECh. 11 - Prob. 11.37ECh. 11 - Prob. 11.38ECh. 11 - Prob. 11.39ECh. 11 - What are the energies and angular momenta of the...Ch. 11 - Prob. 11.41ECh. 11 - A 25-kg child is on a merry-go-round/calliope,...Ch. 11 - Prob. 11.43ECh. 11 - a Using the expression for the energy of a 2-D...Ch. 11 - Prob. 11.45ECh. 11 - Prob. 11.46ECh. 11 - Prob. 11.47ECh. 11 - The quantized angular momentum is choose one:...Ch. 11 - Prob. 11.49ECh. 11 - Prob. 11.50ECh. 11 - Prob. 11.51ECh. 11 - Can you evaluate r for the spherical harmonic Y22?...Ch. 11 - Show that 1,0 and 1,1 for 3-D rotational motion...Ch. 11 - Prob. 11.54ECh. 11 - Prob. 11.55ECh. 11 - a Using the he expression for the energy of a 3-D...Ch. 11 - Prob. 11.57ECh. 11 - In exercise 11.57 regarding C60, what are the...Ch. 11 - Draw the graphical representations see Figure...Ch. 11 - Prob. 11.60ECh. 11 - What is the physical explanation of the difference...Ch. 11 - List the charges on hydrogen-like atoms whose...Ch. 11 - Prob. 11.63ECh. 11 - Prob. 11.64ECh. 11 - Prob. 11.65ECh. 11 - Calculate the difference between the Bohr radius...Ch. 11 - To four significant figures, the first four lines...Ch. 11 - What would the wavelengths of the Balmer series...Ch. 11 - Construct an energy level diagram showing all...Ch. 11 - Prob. 11.70ECh. 11 - What is the degeneracy of an h subshell? An n...Ch. 11 - What is the numerical value of the total angular...Ch. 11 - What are the values of E, L, and Lz for an F8+...Ch. 11 - Prob. 11.74ECh. 11 - Why does the wavefunction 4,4,0 not exist?...Ch. 11 - Prob. 11.76ECh. 11 - What is the probability of finding an electron in...Ch. 11 - What is the probability of finding an electron in...Ch. 11 - Prob. 11.79ECh. 11 - Prob. 11.80ECh. 11 - State how many radial, angular, and total nodes...Ch. 11 - Prob. 11.82ECh. 11 - Prob. 11.83ECh. 11 - Verify the specific value of a, the Bohr radius,...Ch. 11 - Prob. 11.85ECh. 11 - Prob. 11.86ECh. 11 - Evaluate Lz for 3px, Compare it to the answer in...Ch. 11 - Calculate V for 1s of the H atom and compare it to...Ch. 11 - Prob. 11.89ECh. 11 - Prob. 11.90ECh. 11 - Prob. 11.91ECh. 11 - Prob. 11.92ECh. 11 - Graph the first five wavefunctions for the...Ch. 11 - Prob. 11.94ECh. 11 - Set up and evaluate numerically the integral that...Ch. 11 - Prob. 11.96E
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning