Concept explainers
(a) Using the expression for the energy of a
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Physical Chemistry
- Assume that for ¹H35 Cl molecule the rotational quantum number J is 11 and vibrational quantum number n = 0. The isotopic mass of ¹H atom is 1.0078 amu and the isotopic mass of 35 C1 atom is 34.9688 amu, k = 516 N · m¯¹, and x = 127.5 pm. Part E Calculate the period for vibration. Express your answer in seconds to three significant figures. Tvibrational = Part F Submit Previous Answers 1.12x10-14 s Correct Correct answer is shown. Your answer 1.1181.10-¹4 = 1.1181x10-14s was either rounded differently or used a different number of significant figures than required for this part. Calculate the period for rotation. Express your answer in seconds to four significant figures. Trotational = ΑΣΦ W ? Sarrow_forwardConsider the rotational spectrum of a linear molecule at 298 K with a moment of inertia of 1.23×10−461.23\times10^{-46}1.23×10−46 kg m2 . (a) What is the frequency for the transition from J = 2 to J = 3? (b) What is the most populated rotational level for this molecule? Would the transition in (a) give the most intense signal in the rotational spectrum?arrow_forwardQ/ The bond length of the C0O molecule is 112.8 pm. Calculate the following (a) The reduced mass. (b) The rotational constant of CO when moment of inertia (I) is 1.4486 x 1046 kg.m² (c) Calculate the wavelength of the photon absorbed when a CO molecule initially in the J=2 level. makes a transition to the J=3 level.arrow_forward
- Calculate the value of ml for a proton constrained to rotate in a circle of radius 100 pm around a fixed point given that the rotational energy is equal to the classical average energy at 25 degrees C. (Mass of a proton = 1.6726 x 10^-27 kg, classical average energy=1/2kBT, where kBT is Boltzman constant = 1.30 x 10^ -23 J K^-1, and T is the temperature.)arrow_forwardCalculate the energies of the first four rotational levels of 1H127I free to rotate in three dimensions; use for its moment of inertia I = μR2, with μ = mHmI/(mH + mI) and R = 160 pm. Use integer relative atomic masses for this estimate.arrow_forwardA swimmer enters a gloomier world (in one sense) on diving to greater depths. Given that the mean molar absorption coefficient of sea water in the visible region is 6.2 × 10−5 dm3 mol−1 cm−1, calculate the depth at which a diver will experience (i) half the surface intensity of light, (ii) one tenth the surface intensity. Take the absorber concentration to be 10 mmol dm−3.arrow_forward
- Estimate the lifetime of a state that gives rise to a line of width (i) 0.20 cm−1, (ii) 2.0 cm−1.arrow_forwardWhen ultraviolet radiation of wavelength 400 nm passes through 2.50 mm of a solution of an absorbing substance at a concentration 0.717 mmol dm−3, the transmission is 61.5 per cent. Calculate the molar absorption coefficient of the solute at this wavelength. Express your answer in square centimetres per mole (cm2 mol−1).arrow_forward3. ^14N^16O (the superscripts represent the atomic mass number) (a) NO molecules rotate at an angular velocity of 2.01x10^12 rev/s, at the quantized rotational state with the rotational quantum number J of 3. Calculate the bond length of NO molecules. (b) Can NO molecules rotate under light irradiation? Explain your answer. (c) Calculate the effective force constant of the vibrational mode of NO at a frequency of 5.63x10^13 Hz measured by the infrared absorption spectrum. (d) NO has a bond energy of 6.29 eV. Applying the parabolic approximation to estimate the longest distance in which N and O atoms can be stretched before the dissociation of the molecular bondarrow_forward
- Assume that the states of the π electrons of a conjugated molecule can be approximated by the wavefunctions of a particle in a one-dimensional box, and that the magnitude of the dipole moment can be related to the displacement along this length by μ = −ex. Show that the transition probability for the transition n = 1 → n = 2 is non-zero, whereas that for n = 1 → n = 3 is zero. Hints: The following relation will be useful: sin x sin y = 1/2cos(x − y) − 1/2cos(x + y). Relevant integrals are given in the Resource section.arrow_forwardThe molar absorption coefficient of a solute at 540 nm is 386 dm3 mol−1 cm−1. When light of that wavelength passes through a 5.00 mm cell containing a solution of the solute, 38.5 per cent of the light was absorbed. What is the molar concentration of the solute?arrow_forward(b) A system with chemical potential u = 12.5 meV contains identical particles each with integer spin and has a single quantum state at energy E, = 0 meV. The temperature of the system is fixed at 290 K. To three significant figures, what is the ratio Pg/P1, where P is the probability of finding a single particle in the state Eo, and P3 is the probability of finding 3 particles in this state? P3/P (Input your answer as a number.)arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY