Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 11.38E
Interpretation Introduction
Interpretation:
The validation of the given statement that the wavefunctions
Concept introduction:
For the orthogonality of the two different wave functions, the product of the wave functions is integrated over the entire limits. It is expressed by the equation as given below.
Where,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4.
Given these operators A=d/dx and B=x², can you measure the expectation
values of the corresponding observables to infinite precision simultaneously?
Show that the wave functions ψ2 and ψ3 of a particle in a one-dimensional box are orthogonal.
Construct the wavefunction V(r, 0, ø) for an H atoms' electron in the state 2p. Please
note that in order to have a real-valued wavefunction of p, orbital(see below), you need
to do a linear superposition of the corresponding spherical harmonics for the angular
part. Use the spherical harmonics table below. Show that the superposition you selected
indeed results in a real orbital; however, you do not need to simplify the expressions
further or normalize the wavefunction.
y8 = )
Y =
1/2
%3D
Px
3 12
1/2
cos 0
YO = G6)" (5 cos 0-3 cos 0)
%3D
4x
Y1 =7()2 sin Be*io
Y =7(2112 sin 0 (5 cos 6-1)etio
%3D
647)
-y
Yg = G)" (3 cos²0- 1)
Y = " sin? o cos de2i¢
105 1/2
!3!
327
1бл
Y =7
(15 1/2
87
35 12
sin 6e*3i0
1647
sin e cos detie
%3D
%3D
Chapter 11 Solutions
Physical Chemistry
Ch. 11 - Convert 3.558mdyn/A into units of N/m.Ch. 11 - Prob. 11.2ECh. 11 - Prob. 11.3ECh. 11 - Prob. 11.4ECh. 11 - Prob. 11.5ECh. 11 - Prob. 11.6ECh. 11 - Prob. 11.7ECh. 11 - Prob. 11.8ECh. 11 - Prob. 11.9ECh. 11 - Prob. 11.10E
Ch. 11 - Prob. 11.11ECh. 11 - Prob. 11.12ECh. 11 - a For a pendulum having classical frequency of...Ch. 11 - Prob. 11.14ECh. 11 - The OH bond in water vibrates at a frequency of...Ch. 11 - Show that 2 and 3 for the harmonic oscillator are...Ch. 11 - Prob. 11.17ECh. 11 - Prob. 11.18ECh. 11 - Prob. 11.19ECh. 11 - Use the expression for 1 in equations 11.17 and...Ch. 11 - Prob. 11.21ECh. 11 - Prob. 11.22ECh. 11 - Consider Figure 11.4 and choose the correct...Ch. 11 - Based on the trend shown in Figure 11.5, draw the...Ch. 11 - Prob. 11.25ECh. 11 - Prob. 11.26ECh. 11 - Prob. 11.27ECh. 11 - Prob. 11.28ECh. 11 - Prob. 11.29ECh. 11 - Prob. 11.30ECh. 11 - Compare the mass of the electron, me, with a the...Ch. 11 - Reduced mass is not reserved only for atomic...Ch. 11 - Prob. 11.33ECh. 11 - An OH bond has a frequency of 3650cm1. Using...Ch. 11 - Prob. 11.35ECh. 11 - Prob. 11.36ECh. 11 - Prob. 11.37ECh. 11 - Prob. 11.38ECh. 11 - Prob. 11.39ECh. 11 - What are the energies and angular momenta of the...Ch. 11 - Prob. 11.41ECh. 11 - A 25-kg child is on a merry-go-round/calliope,...Ch. 11 - Prob. 11.43ECh. 11 - a Using the expression for the energy of a 2-D...Ch. 11 - Prob. 11.45ECh. 11 - Prob. 11.46ECh. 11 - Prob. 11.47ECh. 11 - The quantized angular momentum is choose one:...Ch. 11 - Prob. 11.49ECh. 11 - Prob. 11.50ECh. 11 - Prob. 11.51ECh. 11 - Can you evaluate r for the spherical harmonic Y22?...Ch. 11 - Show that 1,0 and 1,1 for 3-D rotational motion...Ch. 11 - Prob. 11.54ECh. 11 - Prob. 11.55ECh. 11 - a Using the he expression for the energy of a 3-D...Ch. 11 - Prob. 11.57ECh. 11 - In exercise 11.57 regarding C60, what are the...Ch. 11 - Draw the graphical representations see Figure...Ch. 11 - Prob. 11.60ECh. 11 - What is the physical explanation of the difference...Ch. 11 - List the charges on hydrogen-like atoms whose...Ch. 11 - Prob. 11.63ECh. 11 - Prob. 11.64ECh. 11 - Prob. 11.65ECh. 11 - Calculate the difference between the Bohr radius...Ch. 11 - To four significant figures, the first four lines...Ch. 11 - What would the wavelengths of the Balmer series...Ch. 11 - Construct an energy level diagram showing all...Ch. 11 - Prob. 11.70ECh. 11 - What is the degeneracy of an h subshell? An n...Ch. 11 - What is the numerical value of the total angular...Ch. 11 - What are the values of E, L, and Lz for an F8+...Ch. 11 - Prob. 11.74ECh. 11 - Why does the wavefunction 4,4,0 not exist?...Ch. 11 - Prob. 11.76ECh. 11 - What is the probability of finding an electron in...Ch. 11 - What is the probability of finding an electron in...Ch. 11 - Prob. 11.79ECh. 11 - Prob. 11.80ECh. 11 - State how many radial, angular, and total nodes...Ch. 11 - Prob. 11.82ECh. 11 - Prob. 11.83ECh. 11 - Verify the specific value of a, the Bohr radius,...Ch. 11 - Prob. 11.85ECh. 11 - Prob. 11.86ECh. 11 - Evaluate Lz for 3px, Compare it to the answer in...Ch. 11 - Calculate V for 1s of the H atom and compare it to...Ch. 11 - Prob. 11.89ECh. 11 - Prob. 11.90ECh. 11 - Prob. 11.91ECh. 11 - Prob. 11.92ECh. 11 - Graph the first five wavefunctions for the...Ch. 11 - Prob. 11.94ECh. 11 - Set up and evaluate numerically the integral that...Ch. 11 - Prob. 11.96E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The following operators and functions are defined: A=x()B=sin()C=1()D=10()p=4x32x2q=0.5r=45xy2s=2x3 Evaluate: a Ap b Cq c Bs d Dq e A(Cr) f A(Dq)arrow_forwardFor a particle in a state having the wavefunction =2asinxa in the range x=0toa, what is the probability that the particle exists in the following intervals? a x=0to0.02ab x=0.24ato0.26a c x=0.49ato0.51ad x=0.74ato0.76a e x=0.98ato1.00a Plot the probabilities versus x. What does your plot illustrate about the probability?arrow_forwardWhat is the degeneracy of an h subshell? An n subshell?arrow_forward
- Why does the wavefunction 4,4,0 not exist? Similarly, why does a 3f subshell not exist? See exercise 11.73 for notation definition.arrow_forwardSketch the form of the wavefunctions for the harmonic oscillator with quantum numbers v = 1 and 2. Use a symmetry argument to explain why these two wavefunctions are orthogonal (do not evaluate any integrals).arrow_forward8. Show that the wavefunction ₁ is normalized over all space. The wavefunction is given by, √3 2√2π ei sin 0 ¥1,1 = 7arrow_forward
- Write the wavefunction for the n = 3 excited state of the particle in a box terms of h, m, and L. Make sure your wavefunction is properly normalized. Use the editor to format your answerarrow_forwardWithout evaluating any integrals, state the value of the expectation value of x for a particle in a box of length L for the case where the wavefunction has n = 2. Explain how you arrived at your answer.arrow_forwardConsider the three spherical harmonics (a) Y0,0, (b) Y2,–1, and (c) Y3,+3. (a) For each spherical harmonic, substitute the explicit form of the function taken from Table 7F.1 into the left-hand side of eqn 7F.8 (the Schrödinger equation for a particle on a sphere) and confirm that the function is a solution of the equation; give the corresponding eigenvalue (the energy) and show that it agrees with eqn 7F.10. (b) Likewise, show that each spherical harmonic is an eigenfunction of lˆz = (ℏ/i)(d/dϕ) and give the eigenvalue in each case.arrow_forward
- Locate the nodes of a harmonic oscillator wavefunction with v = 2. (Express your answers in terms of the coordinate y.)arrow_forward2. Commuting operators. (a) Show whether the operator of the kinetic energy operator K and the momentum operator Px for a one-dimensional system commute (show every step). (b) What does the result mean (physical interpretation)?arrow_forwardCalculate the energies of an electron in the fourth, fifth, and sixth energy levels of the Bohr nydrogen atom. Calculate the angular momenta of an electron in the fourth, fifth, and sixth energy evels of the Bohr hydrogen atom.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co