Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 11.33E
Interpretation Introduction
(a)
Interpretation:
The expected harmonic-oscillator frequency of vibration for carbon monoxide,
Concept introduction:
The formula to calculate reduced mass is given by,
The formula to calculate the frequency of vibration for harmonic oscillator is given by,
Interpretation Introduction
(b)
Interpretation:
The expected harmonic-oscillator frequency of vibration for
Concept introduction:
The formula to calculate reduced mass is given by,
The formula to calculate the frequency of vibration for harmonic oscillator is given by,
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Rotational spectra are affected slightly by the fact that different isotopes have different masses. Suppose a sample of the common isotope 1H35Cl is changed to 1H37Cl.
(a) By what fraction is the molecule’s rotational inertia different? (The bond length is 0.127 nm in each case.)
(b) What is the change in energy of theℓ = 1 to theℓ = 0 transition if the isotope is changed?
The C-H bond in ethanol vibrates at a
frequency of 3000 cm ¹. What frequency (s
1) of light is required to change the
vibrational quantum number from v=0 to
v=1, assuming that C-H acts as a harmonic
oscillator.
3. ^14N^16O (the superscripts represent the atomic mass number)
(a) NO molecules rotate at an angular velocity of 2.01x10^12 rev/s, at the quantized rotational state with the rotational quantum number J of 3. Calculate the bond length of NO molecules.
(b) Can NO molecules rotate under light irradiation? Explain your answer.
(c) Calculate the effective force constant of the vibrational mode of NO at a frequency of 5.63x10^13 Hz measured by the infrared absorption spectrum.
(d) NO has a bond energy of 6.29 eV. Applying the parabolic approximation to estimate the longest distance in which N and O atoms can be stretched before the dissociation of the molecular bond
Chapter 11 Solutions
Physical Chemistry
Ch. 11 - Convert 3.558mdyn/A into units of N/m.Ch. 11 - Prob. 11.2ECh. 11 - Prob. 11.3ECh. 11 - Prob. 11.4ECh. 11 - Prob. 11.5ECh. 11 - Prob. 11.6ECh. 11 - Prob. 11.7ECh. 11 - Prob. 11.8ECh. 11 - Prob. 11.9ECh. 11 - Prob. 11.10E
Ch. 11 - Prob. 11.11ECh. 11 - Prob. 11.12ECh. 11 - a For a pendulum having classical frequency of...Ch. 11 - Prob. 11.14ECh. 11 - The OH bond in water vibrates at a frequency of...Ch. 11 - Show that 2 and 3 for the harmonic oscillator are...Ch. 11 - Prob. 11.17ECh. 11 - Prob. 11.18ECh. 11 - Prob. 11.19ECh. 11 - Use the expression for 1 in equations 11.17 and...Ch. 11 - Prob. 11.21ECh. 11 - Prob. 11.22ECh. 11 - Consider Figure 11.4 and choose the correct...Ch. 11 - Based on the trend shown in Figure 11.5, draw the...Ch. 11 - Prob. 11.25ECh. 11 - Prob. 11.26ECh. 11 - Prob. 11.27ECh. 11 - Prob. 11.28ECh. 11 - Prob. 11.29ECh. 11 - Prob. 11.30ECh. 11 - Compare the mass of the electron, me, with a the...Ch. 11 - Reduced mass is not reserved only for atomic...Ch. 11 - Prob. 11.33ECh. 11 - An OH bond has a frequency of 3650cm1. Using...Ch. 11 - Prob. 11.35ECh. 11 - Prob. 11.36ECh. 11 - Prob. 11.37ECh. 11 - Prob. 11.38ECh. 11 - Prob. 11.39ECh. 11 - What are the energies and angular momenta of the...Ch. 11 - Prob. 11.41ECh. 11 - A 25-kg child is on a merry-go-round/calliope,...Ch. 11 - Prob. 11.43ECh. 11 - a Using the expression for the energy of a 2-D...Ch. 11 - Prob. 11.45ECh. 11 - Prob. 11.46ECh. 11 - Prob. 11.47ECh. 11 - The quantized angular momentum is choose one:...Ch. 11 - Prob. 11.49ECh. 11 - Prob. 11.50ECh. 11 - Prob. 11.51ECh. 11 - Can you evaluate r for the spherical harmonic Y22?...Ch. 11 - Show that 1,0 and 1,1 for 3-D rotational motion...Ch. 11 - Prob. 11.54ECh. 11 - Prob. 11.55ECh. 11 - a Using the he expression for the energy of a 3-D...Ch. 11 - Prob. 11.57ECh. 11 - In exercise 11.57 regarding C60, what are the...Ch. 11 - Draw the graphical representations see Figure...Ch. 11 - Prob. 11.60ECh. 11 - What is the physical explanation of the difference...Ch. 11 - List the charges on hydrogen-like atoms whose...Ch. 11 - Prob. 11.63ECh. 11 - Prob. 11.64ECh. 11 - Prob. 11.65ECh. 11 - Calculate the difference between the Bohr radius...Ch. 11 - To four significant figures, the first four lines...Ch. 11 - What would the wavelengths of the Balmer series...Ch. 11 - Construct an energy level diagram showing all...Ch. 11 - Prob. 11.70ECh. 11 - What is the degeneracy of an h subshell? An n...Ch. 11 - What is the numerical value of the total angular...Ch. 11 - What are the values of E, L, and Lz for an F8+...Ch. 11 - Prob. 11.74ECh. 11 - Why does the wavefunction 4,4,0 not exist?...Ch. 11 - Prob. 11.76ECh. 11 - What is the probability of finding an electron in...Ch. 11 - What is the probability of finding an electron in...Ch. 11 - Prob. 11.79ECh. 11 - Prob. 11.80ECh. 11 - State how many radial, angular, and total nodes...Ch. 11 - Prob. 11.82ECh. 11 - Prob. 11.83ECh. 11 - Verify the specific value of a, the Bohr radius,...Ch. 11 - Prob. 11.85ECh. 11 - Prob. 11.86ECh. 11 - Evaluate Lz for 3px, Compare it to the answer in...Ch. 11 - Calculate V for 1s of the H atom and compare it to...Ch. 11 - Prob. 11.89ECh. 11 - Prob. 11.90ECh. 11 - Prob. 11.91ECh. 11 - Prob. 11.92ECh. 11 - Graph the first five wavefunctions for the...Ch. 11 - Prob. 11.94ECh. 11 - Set up and evaluate numerically the integral that...Ch. 11 - Prob. 11.96E
Knowledge Booster
Similar questions
- What is the physical explanation of the difference between a particle having the 3-D rotational wavefunction 3,2 and an identical particle having the wavefunction 3,2?arrow_forwardAssume that for ¹H35 Cl molecule the rotational quantum number J is 11 and vibrational quantum number n = 0. The isotopic mass of ¹H atom is 1.0078 amu and the isotopic mass of 35 C1 atom is 34.9688 amu, k = 516 N · m¯¹, and x = 127.5 pm. Part E Calculate the period for vibration. Express your answer in seconds to three significant figures. Tvibrational = Part F Submit Previous Answers 1.12x10-14 s Correct Correct answer is shown. Your answer 1.1181.10-¹4 = 1.1181x10-14s was either rounded differently or used a different number of significant figures than required for this part. Calculate the period for rotation. Express your answer in seconds to four significant figures. Trotational = ΑΣΦ W ? Sarrow_forwardCa lcu late the size of the quantum involved in the excitation of (a) an electronic motion of frequency 1.0 x 1015 Hz. (b) a molecular vibration of period 20 Is. (c) a pendulum of period 0.50 s. Express the results in joules and in kilojoules per mole.arrow_forward
- Calculate the energy of the quantum involved in the excitation of (i) an electronic oscillation of period 1.0 fs, (ii) a molecular vibration of period 10 fs, (iii) a pendulum of period 1.0 s. Express the results in joules and kilojoules per mole.arrow_forwardThe ground-state wavefunction for a particle confined to a one dimensional box of length L is Ψ =(2/L)½ sin (πx/L) Suppose the box 10.0 nm long. Calculate the probability that the particle is: (a) between x = 4.95 nm and 5.05 nm (b) between 1.95 nm and 2.05 nm, (c) between x = 9.90 and 10.00 nm, (d) in the right half of the box and (e) in the central third of the box.arrow_forwardSound waves, like light waves, can interfere with each other, giving maximum and minimum levels of sound. Suppose a listener standing directly between two loudspeakers hears the same tone being emitted from both. This listener observes that when one of the speakers ismoved 0.16 m farther away, the perceived intensity of thetone decreases from a maximum to a minimum.(a) Calculate the wavelength of the sound.(b) Calculate its frequency, using 343 m s-1as the speedof sound.arrow_forward
- Q5) Which of the following transitions are electric-dipole allowed? (i) 'Πε Π, (ii) ἦΣ → 'Σ, (iii) Σ+ Δ, (iv) Σ΄ «Σ, (v)Σ → Σ.arrow_forwardIn a molecule of hydrogen iodide HI (HI is used in organic and inorganic synthesis as one of the main sources of iodine and as a reducing agent) the vibrational frequency of the molecule is 6.69x10^13 Hz. Iodine is much more heavier than hydrogen, so I can be considered immobile compared to H. Determine the expected value of the potential energy for the hydrogen atom in this molecule in the ground state. Use this to calculate the expected value of the kinetic energy.arrow_forwardVibrations in the diatomic molecule CO can be approximated as a harmonic oscillator, where the angular frequency w = 6.505 x 1013 Hz and the reduced mass is equal to u = 1.14 × 10-27 kg. Assume the molecule is in its fırst excited vibrational state. Its vibrational wavefunction can then be written as V1 (x) = (4) /2a xe where a = . If we were to measure the bond length of the molecule, what is the most likely displacement from the equilibrium bond distance in the first excited vibrational state? Give your answer in Angstroms [Note: The equilibrium displacement in the Quantum harmonic oscillator corresponds to r = 0, ie the coordinate x measures displacement from equilibrium]arrow_forward
- 8C.4 (a) the moment of inertia of a CH4 molecule is 5.27 x 10^-47 kg m^2. What is the minimum energy needed to start it rotating? 8C.5 (a) use the data in 8C.4 (a) to calculate the energy needed excite a CH4 molecule from a state with l=1 to a state with l=2arrow_forwardThe J = 0 to J = 1 rotational transition of the CO molecule occurs at a frequency of 1.15 x 1011 Hz.(A) Use this information to calculate the moment of inertia of the molecule. (B) Calculate the bond length of the molecule.arrow_forwardUsing the rigid rotor model, calculate the energies in Joules of the first three rotational levels of HBr, using for its moment of inertia I = μR2, with μ = mHmX/(mH + mX) and equilibrium internuclear distance = 1.63 Å. To put these energies into units that make sense to us, convert energy to kJ/mol. (Simply estimate atomic masses from the average atomic weights of the elements given in the periodic table).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,