Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 11.17E
Interpretation Introduction
Interpretation:
The validation of the expression
Concept introduction:
The Schrödinger equation for one-dimensional harmonic oscillator is,
Where,
•
•
•
•
• The value of constant
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Imagine a particle free to move in the x direction. Which of the following wavefunctions would be acceptable for such a particle? In eachcase, give your reasons for accepting or rejecting each function. (i) Ψ(x)=x2; (ii) Ψ(x)=1/x; (iii) Ψ(x)=e-x^2.
Consider the three spherical harmonics (a) Y0,0, (b) Y2,–1, and (c) Y3,+3. (a) For each spherical harmonic, substitute the explicit form of the function taken from Table 7F.1 into the left-hand side of eqn 7F.8 (the Schrödinger equation for a particle on a sphere) and confirm that the function is a solution of the equation; give the corresponding eigenvalue (the energy) and show that it agrees with eqn 7F.10. (b) Likewise, show that each spherical harmonic is an eigenfunction of lˆz = (ℏ/i)(d/dϕ) and give the eigenvalue in each case.
Calculate the probability that a particle will be found between 0.49L and 0.51L in a box of length L for (i) ψ1, (ii) ψ2. You may assume that the wavefunction is constant in this range, so the probability is ψ2δx.
Chapter 11 Solutions
Physical Chemistry
Ch. 11 - Convert 3.558mdyn/A into units of N/m.Ch. 11 - Prob. 11.2ECh. 11 - Prob. 11.3ECh. 11 - Prob. 11.4ECh. 11 - Prob. 11.5ECh. 11 - Prob. 11.6ECh. 11 - Prob. 11.7ECh. 11 - Prob. 11.8ECh. 11 - Prob. 11.9ECh. 11 - Prob. 11.10E
Ch. 11 - Prob. 11.11ECh. 11 - Prob. 11.12ECh. 11 - a For a pendulum having classical frequency of...Ch. 11 - Prob. 11.14ECh. 11 - The OH bond in water vibrates at a frequency of...Ch. 11 - Show that 2 and 3 for the harmonic oscillator are...Ch. 11 - Prob. 11.17ECh. 11 - Prob. 11.18ECh. 11 - Prob. 11.19ECh. 11 - Use the expression for 1 in equations 11.17 and...Ch. 11 - Prob. 11.21ECh. 11 - Prob. 11.22ECh. 11 - Consider Figure 11.4 and choose the correct...Ch. 11 - Based on the trend shown in Figure 11.5, draw the...Ch. 11 - Prob. 11.25ECh. 11 - Prob. 11.26ECh. 11 - Prob. 11.27ECh. 11 - Prob. 11.28ECh. 11 - Prob. 11.29ECh. 11 - Prob. 11.30ECh. 11 - Compare the mass of the electron, me, with a the...Ch. 11 - Reduced mass is not reserved only for atomic...Ch. 11 - Prob. 11.33ECh. 11 - An OH bond has a frequency of 3650cm1. Using...Ch. 11 - Prob. 11.35ECh. 11 - Prob. 11.36ECh. 11 - Prob. 11.37ECh. 11 - Prob. 11.38ECh. 11 - Prob. 11.39ECh. 11 - What are the energies and angular momenta of the...Ch. 11 - Prob. 11.41ECh. 11 - A 25-kg child is on a merry-go-round/calliope,...Ch. 11 - Prob. 11.43ECh. 11 - a Using the expression for the energy of a 2-D...Ch. 11 - Prob. 11.45ECh. 11 - Prob. 11.46ECh. 11 - Prob. 11.47ECh. 11 - The quantized angular momentum is choose one:...Ch. 11 - Prob. 11.49ECh. 11 - Prob. 11.50ECh. 11 - Prob. 11.51ECh. 11 - Can you evaluate r for the spherical harmonic Y22?...Ch. 11 - Show that 1,0 and 1,1 for 3-D rotational motion...Ch. 11 - Prob. 11.54ECh. 11 - Prob. 11.55ECh. 11 - a Using the he expression for the energy of a 3-D...Ch. 11 - Prob. 11.57ECh. 11 - In exercise 11.57 regarding C60, what are the...Ch. 11 - Draw the graphical representations see Figure...Ch. 11 - Prob. 11.60ECh. 11 - What is the physical explanation of the difference...Ch. 11 - List the charges on hydrogen-like atoms whose...Ch. 11 - Prob. 11.63ECh. 11 - Prob. 11.64ECh. 11 - Prob. 11.65ECh. 11 - Calculate the difference between the Bohr radius...Ch. 11 - To four significant figures, the first four lines...Ch. 11 - What would the wavelengths of the Balmer series...Ch. 11 - Construct an energy level diagram showing all...Ch. 11 - Prob. 11.70ECh. 11 - What is the degeneracy of an h subshell? An n...Ch. 11 - What is the numerical value of the total angular...Ch. 11 - What are the values of E, L, and Lz for an F8+...Ch. 11 - Prob. 11.74ECh. 11 - Why does the wavefunction 4,4,0 not exist?...Ch. 11 - Prob. 11.76ECh. 11 - What is the probability of finding an electron in...Ch. 11 - What is the probability of finding an electron in...Ch. 11 - Prob. 11.79ECh. 11 - Prob. 11.80ECh. 11 - State how many radial, angular, and total nodes...Ch. 11 - Prob. 11.82ECh. 11 - Prob. 11.83ECh. 11 - Verify the specific value of a, the Bohr radius,...Ch. 11 - Prob. 11.85ECh. 11 - Prob. 11.86ECh. 11 - Evaluate Lz for 3px, Compare it to the answer in...Ch. 11 - Calculate V for 1s of the H atom and compare it to...Ch. 11 - Prob. 11.89ECh. 11 - Prob. 11.90ECh. 11 - Prob. 11.91ECh. 11 - Prob. 11.92ECh. 11 - Graph the first five wavefunctions for the...Ch. 11 - Prob. 11.94ECh. 11 - Set up and evaluate numerically the integral that...Ch. 11 - Prob. 11.96E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- For a particle in a state having the wavefunction =2asinxa in the range x=0toa, what is the probability that the particle exists in the following intervals? a x=0to0.02ab x=0.24ato0.26a c x=0.49ato0.51ad x=0.74ato0.76a e x=0.98ato1.00a Plot the probabilities versus x. What does your plot illustrate about the probability?arrow_forwardWithout evaluating any integrals, state the value of the expectation value of x for a particle in a box of length L for the case where the wavefunction has n = 2. Explain how you arrived at your answer.arrow_forward4. Given these operators A=d/dx and B=x², can you measure the expectation values of the corresponding observables to infinite precision simultaneously?arrow_forward
- The rotation of a molecule can be represented by the motion of a particle moving over the surface of a sphere with angular momentum quantum number l = 2. Calculate the magnitude of its angular momentum and the possible components of the angular momentum along the z-axis. Express your results as multiples of ℏ.arrow_forwardA particle freely moving in one dimension x with 0 ≤ x ≤ ∞ is in a state described by the normalized wavefunction ψ(x) = a1/2e–ax/2, where a is a constant. Evaluate the expectation value of the position operator.arrow_forwardWhere are the nodes in the wavefunction for a particle confined to a box with 0 < x < a and n=3?arrow_forward
- The rotation of a molecule can be represented by the motion of a particle moving over the surface of a sphere. Calculate the magnitude of its angular momentum when l = 1 and the possible components of the angular momentum along the z-axis. Express your results as multiples of ℏ.arrow_forwardLocate the nodes of a harmonic oscillator wavefunction with v = 2. (Express your answers in terms of the coordinate y.)arrow_forwardA normalized wavefunction for a particle confined between 0 and L in the x direction is ψ = (2/L)1/2 sin(πx/L). Suppose that L = 10.0 nm. Calculate the probability that the particle is (a) between x = 4.95 nm and 5.05 nm, (b) between x = 1.95 nm and 2.05 nm, (c) between x = 9.90 nm and 10.00 nm, (d) between x = 5.00 nm and 10.00 nm.arrow_forward
- The ground-state wavefunction for a particle confined to a one dimensional box of length L is Ψ =(2/L)½ sin (πx/L) Suppose the box 10.0 nm long. Calculate the probability that the particle is: (a) between x = 4.95 nm and 5.05 nm (b) between 1.95 nm and 2.05 nm, (c) between x = 9.90 and 10.00 nm, (d) in the right half of the box and (e) in the central third of the box.arrow_forwardThe wave function for the ground state of the harmonic oscillator is Vo(x) = Ce-[mw/(2ħ)]x² where C is an arbitrary constant, ħ is Planck's constant divided by 2π, m is the mass of the particle, W = ✓k/m, and k is the "spring constant" for the harmonic oscillator. Part A Normalize this wave function. What is the (positive) value of C once this wave function is normalized? You will need the formula Se -∞ Express your answer in terms of w, m, ħ, and T. ► View Available Hint(s) C = 17 ΑΣΦ xa Xh عات a √x vx 18 X> IXI -ax² X.10n X = ? wwwwwwwwww √. aarrow_forwardDetermine the normalisation constant A for the ground-state wave function of an electron in a hydrogen atom at distance x from the nucleus ψ(x)=Axe-bx.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,