Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 11.35E
Interpretation Introduction
(a)
Interpretation:
The vibrational frequency of
Concept introduction:
The formula to calculate reduced mass is given by,
Where,
•
•
Interpretation Introduction
(b)
Interpretation:
The expected frequency of the
Concept introduction:
The formula to calculate reduced mass is given by,
Where,
•
•
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The vibrational frequency of the hydrogen chloride HCl diatomic molecule is 8.97 x 1013Hz. chloride atom is
35.5 times more massive than hydrogen atom. (mµ = 1.67 x 0-27kg,c = 3.0 x 10°m/s)
a) What is the force constant of the molecular bond between the hydrogen and the chloride atoms?
b) What is the energy of the emitted photon when this molecule makes a transition between adjacent
vibrational energy levels?
c) What is the wavelength of the emitted photon?
d) The possible wavelengths of photons emitted with the HCl molecule decays from the 2nd excited state
eventually to the ground state(0 state).
We have a HCl molecule, with H and Cl have atomic mass of 1.0 and 35.5 amu, respectively. The force constant is 480 N/m for this H-Cl bond, what is the photon frequency when the HCl molecule decay from its second excited vibrational state to its ground vibrational state?
Sound waves, like light waves, can interfere with each other, giving maximum and minimum levels of sound. Suppose a listener standing directly between two loudspeakers hears the same tone being emitted from both.
This listener observes that when one of the speakers ismoved 0.16 m farther away, the perceived intensity of thetone decreases from a maximum to a minimum.(a) Calculate the wavelength of the sound.(b) Calculate its frequency, using 343 m s-1as the speedof sound.
Chapter 11 Solutions
Physical Chemistry
Ch. 11 - Convert 3.558mdyn/A into units of N/m.Ch. 11 - Prob. 11.2ECh. 11 - Prob. 11.3ECh. 11 - Prob. 11.4ECh. 11 - Prob. 11.5ECh. 11 - Prob. 11.6ECh. 11 - Prob. 11.7ECh. 11 - Prob. 11.8ECh. 11 - Prob. 11.9ECh. 11 - Prob. 11.10E
Ch. 11 - Prob. 11.11ECh. 11 - Prob. 11.12ECh. 11 - a For a pendulum having classical frequency of...Ch. 11 - Prob. 11.14ECh. 11 - The OH bond in water vibrates at a frequency of...Ch. 11 - Show that 2 and 3 for the harmonic oscillator are...Ch. 11 - Prob. 11.17ECh. 11 - Prob. 11.18ECh. 11 - Prob. 11.19ECh. 11 - Use the expression for 1 in equations 11.17 and...Ch. 11 - Prob. 11.21ECh. 11 - Prob. 11.22ECh. 11 - Consider Figure 11.4 and choose the correct...Ch. 11 - Based on the trend shown in Figure 11.5, draw the...Ch. 11 - Prob. 11.25ECh. 11 - Prob. 11.26ECh. 11 - Prob. 11.27ECh. 11 - Prob. 11.28ECh. 11 - Prob. 11.29ECh. 11 - Prob. 11.30ECh. 11 - Compare the mass of the electron, me, with a the...Ch. 11 - Reduced mass is not reserved only for atomic...Ch. 11 - Prob. 11.33ECh. 11 - An OH bond has a frequency of 3650cm1. Using...Ch. 11 - Prob. 11.35ECh. 11 - Prob. 11.36ECh. 11 - Prob. 11.37ECh. 11 - Prob. 11.38ECh. 11 - Prob. 11.39ECh. 11 - What are the energies and angular momenta of the...Ch. 11 - Prob. 11.41ECh. 11 - A 25-kg child is on a merry-go-round/calliope,...Ch. 11 - Prob. 11.43ECh. 11 - a Using the expression for the energy of a 2-D...Ch. 11 - Prob. 11.45ECh. 11 - Prob. 11.46ECh. 11 - Prob. 11.47ECh. 11 - The quantized angular momentum is choose one:...Ch. 11 - Prob. 11.49ECh. 11 - Prob. 11.50ECh. 11 - Prob. 11.51ECh. 11 - Can you evaluate r for the spherical harmonic Y22?...Ch. 11 - Show that 1,0 and 1,1 for 3-D rotational motion...Ch. 11 - Prob. 11.54ECh. 11 - Prob. 11.55ECh. 11 - a Using the he expression for the energy of a 3-D...Ch. 11 - Prob. 11.57ECh. 11 - In exercise 11.57 regarding C60, what are the...Ch. 11 - Draw the graphical representations see Figure...Ch. 11 - Prob. 11.60ECh. 11 - What is the physical explanation of the difference...Ch. 11 - List the charges on hydrogen-like atoms whose...Ch. 11 - Prob. 11.63ECh. 11 - Prob. 11.64ECh. 11 - Prob. 11.65ECh. 11 - Calculate the difference between the Bohr radius...Ch. 11 - To four significant figures, the first four lines...Ch. 11 - What would the wavelengths of the Balmer series...Ch. 11 - Construct an energy level diagram showing all...Ch. 11 - Prob. 11.70ECh. 11 - What is the degeneracy of an h subshell? An n...Ch. 11 - What is the numerical value of the total angular...Ch. 11 - What are the values of E, L, and Lz for an F8+...Ch. 11 - Prob. 11.74ECh. 11 - Why does the wavefunction 4,4,0 not exist?...Ch. 11 - Prob. 11.76ECh. 11 - What is the probability of finding an electron in...Ch. 11 - What is the probability of finding an electron in...Ch. 11 - Prob. 11.79ECh. 11 - Prob. 11.80ECh. 11 - State how many radial, angular, and total nodes...Ch. 11 - Prob. 11.82ECh. 11 - Prob. 11.83ECh. 11 - Verify the specific value of a, the Bohr radius,...Ch. 11 - Prob. 11.85ECh. 11 - Prob. 11.86ECh. 11 - Evaluate Lz for 3px, Compare it to the answer in...Ch. 11 - Calculate V for 1s of the H atom and compare it to...Ch. 11 - Prob. 11.89ECh. 11 - Prob. 11.90ECh. 11 - Prob. 11.91ECh. 11 - Prob. 11.92ECh. 11 - Graph the first five wavefunctions for the...Ch. 11 - Prob. 11.94ECh. 11 - Set up and evaluate numerically the integral that...Ch. 11 - Prob. 11.96E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Chapter 3 introduced the concept of a double bond between carbon atoms, represented by C=C , with a length near 1.34 Å. The motion of an electron in such a bond can be treated crudely as motion in a one-dimensional box. Calculate the energy of an electron in each of its three lowest allowed states if it is confined to move in a one-dimensional box of length 1.34 Å. Calculate the wavelength of light necessary to excite the electron from its ground state to the first excited state.arrow_forwardConsider burning ethane gas, C2H6 in oxygen (combustion) forming CO2 and water. (a) How much energy (in J) is produced in the combustion of one molecule of ethane? (b) What is the energy of a photon of ultraviolet light with a wavelength of 12.6 nm? (c) Compare your answers for (a) and (b).arrow_forward2. Calculate the bond length of the OH molecule in the gas phase if the first two lines of the microwave spectrum occur at 8.562 cm1 and 17.124 cm.arrow_forward
- The electronic spectrum of the molecule butadiene, H2C=CH–CH=CH2, can be approximated using the one-dimensional particle-in-a-box if one assumes that the conjugated double bonds span the entire four-carbon chain. If the electron absorbing a photon having wavelength 217 nm is going from the level n =2 to the level n =3, what is the approximate length of the C4H6 molecule?arrow_forwardWhat is (a) the energy. (b) the speed of an electron that has been ejected from an orbital of ionization energy 10.0 eV by a photon of radiation of wavelength 110 nm?arrow_forwardThe C-H bond in ethanol vibrates at a frequency of 3000 cm ¹. What frequency (s 1) of light is required to change the vibrational quantum number from v=0 to v=1, assuming that C-H acts as a harmonic oscillator.arrow_forward
- The lines of the rotational spectrum of HBr are 5.10 x 10^11 Hz apart in frequency. Find the internuclear distance in HBr. (Notes: Since the Br atom is about 80 times more massive than the proton, the reduced mass of an HBr molecule can be taken as just the 1H mass.)arrow_forwardAn aqueous solution of chloroethanoic acid at 25oC is irradiated with light of wavelength 253.7 nm. As a consequence, a photochemical reaction occurs where 2-hydroxyethanoic acid and hydrogen chloride are obtained. It is observed that when 34.37 J are absorbed, 2.325·10-5 moles of chlorine ion are formed. a) Wwtermine the number of Einsteins absorbed c) calculate the quantum yield of the reaction.arrow_forwardAssume that for ¹H35 Cl molecule the rotational quantum number J is 11 and vibrational quantum number n = 0. The isotopic mass of ¹H atom is 1.0078 amu and the isotopic mass of 35 C1 atom is 34.9688 amu, k = 516 N · m¯¹, and x = 127.5 pm. Part E Calculate the period for vibration. Express your answer in seconds to three significant figures. Tvibrational = Part F Submit Previous Answers 1.12x10-14 s Correct Correct answer is shown. Your answer 1.1181.10-¹4 = 1.1181x10-14s was either rounded differently or used a different number of significant figures than required for this part. Calculate the period for rotation. Express your answer in seconds to four significant figures. Trotational = ΑΣΦ W ? Sarrow_forward
- A diode laser emits at a wavelength of 987 nm. (a) In what portionof the electromagnetic spectrum is this radiation found?(b) All of its output energy is absorbed in a detector that measuresa total energy of 0.52 J over a period of 32 s. How manyphotons per second are being emitted by the laser?arrow_forwardThe Chemistry and Life box in Section 6.7 described the techniquescalled NMR and MRI. (a) Instruments for obtainingMRI data are typically labeled with a frequency, such as 600MHz. In what region of the electromagnetic spectrum doesa photon with this frequency belong? (b) What is the valueof ΔE in Figure 6.27 that would correspond to the absorptionof a photon of radiation with frequency 450 MHz? (c) Whenthe 450-MHz photon is absorbed, does it change the spin ofthe electron or the proton on a hydrogen atom?arrow_forwardThe sound wave travels in CO2 at 1.006kHz. We measure the average wavelength to be 23.63cm. What is the speed of the sound traveling in CO2?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning