Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 11.48E
The quantized
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Physical Chemistry
Ch. 11 - Convert 3.558mdyn/A into units of N/m.Ch. 11 - Prob. 11.2ECh. 11 - Prob. 11.3ECh. 11 - Prob. 11.4ECh. 11 - Prob. 11.5ECh. 11 - Prob. 11.6ECh. 11 - Prob. 11.7ECh. 11 - Prob. 11.8ECh. 11 - Prob. 11.9ECh. 11 - Prob. 11.10E
Ch. 11 - Prob. 11.11ECh. 11 - Prob. 11.12ECh. 11 - a For a pendulum having classical frequency of...Ch. 11 - Prob. 11.14ECh. 11 - The OH bond in water vibrates at a frequency of...Ch. 11 - Show that 2 and 3 for the harmonic oscillator are...Ch. 11 - Prob. 11.17ECh. 11 - Prob. 11.18ECh. 11 - Prob. 11.19ECh. 11 - Use the expression for 1 in equations 11.17 and...Ch. 11 - Prob. 11.21ECh. 11 - Prob. 11.22ECh. 11 - Consider Figure 11.4 and choose the correct...Ch. 11 - Based on the trend shown in Figure 11.5, draw the...Ch. 11 - Prob. 11.25ECh. 11 - Prob. 11.26ECh. 11 - Prob. 11.27ECh. 11 - Prob. 11.28ECh. 11 - Prob. 11.29ECh. 11 - Prob. 11.30ECh. 11 - Compare the mass of the electron, me, with a the...Ch. 11 - Reduced mass is not reserved only for atomic...Ch. 11 - Prob. 11.33ECh. 11 - An OH bond has a frequency of 3650cm1. Using...Ch. 11 - Prob. 11.35ECh. 11 - Prob. 11.36ECh. 11 - Prob. 11.37ECh. 11 - Prob. 11.38ECh. 11 - Prob. 11.39ECh. 11 - What are the energies and angular momenta of the...Ch. 11 - Prob. 11.41ECh. 11 - A 25-kg child is on a merry-go-round/calliope,...Ch. 11 - Prob. 11.43ECh. 11 - a Using the expression for the energy of a 2-D...Ch. 11 - Prob. 11.45ECh. 11 - Prob. 11.46ECh. 11 - Prob. 11.47ECh. 11 - The quantized angular momentum is choose one:...Ch. 11 - Prob. 11.49ECh. 11 - Prob. 11.50ECh. 11 - Prob. 11.51ECh. 11 - Can you evaluate r for the spherical harmonic Y22?...Ch. 11 - Show that 1,0 and 1,1 for 3-D rotational motion...Ch. 11 - Prob. 11.54ECh. 11 - Prob. 11.55ECh. 11 - a Using the he expression for the energy of a 3-D...Ch. 11 - Prob. 11.57ECh. 11 - In exercise 11.57 regarding C60, what are the...Ch. 11 - Draw the graphical representations see Figure...Ch. 11 - Prob. 11.60ECh. 11 - What is the physical explanation of the difference...Ch. 11 - List the charges on hydrogen-like atoms whose...Ch. 11 - Prob. 11.63ECh. 11 - Prob. 11.64ECh. 11 - Prob. 11.65ECh. 11 - Calculate the difference between the Bohr radius...Ch. 11 - To four significant figures, the first four lines...Ch. 11 - What would the wavelengths of the Balmer series...Ch. 11 - Construct an energy level diagram showing all...Ch. 11 - Prob. 11.70ECh. 11 - What is the degeneracy of an h subshell? An n...Ch. 11 - What is the numerical value of the total angular...Ch. 11 - What are the values of E, L, and Lz for an F8+...Ch. 11 - Prob. 11.74ECh. 11 - Why does the wavefunction 4,4,0 not exist?...Ch. 11 - Prob. 11.76ECh. 11 - What is the probability of finding an electron in...Ch. 11 - What is the probability of finding an electron in...Ch. 11 - Prob. 11.79ECh. 11 - Prob. 11.80ECh. 11 - State how many radial, angular, and total nodes...Ch. 11 - Prob. 11.82ECh. 11 - Prob. 11.83ECh. 11 - Verify the specific value of a, the Bohr radius,...Ch. 11 - Prob. 11.85ECh. 11 - Prob. 11.86ECh. 11 - Evaluate Lz for 3px, Compare it to the answer in...Ch. 11 - Calculate V for 1s of the H atom and compare it to...Ch. 11 - Prob. 11.89ECh. 11 - Prob. 11.90ECh. 11 - Prob. 11.91ECh. 11 - Prob. 11.92ECh. 11 - Graph the first five wavefunctions for the...Ch. 11 - Prob. 11.94ECh. 11 - Set up and evaluate numerically the integral that...Ch. 11 - Prob. 11.96E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Consider a one-dimensional particle-in-a-box and a three-dimensional particle-in-a-box that have the same dimensions. a What is the ratio of the energies of a particle having the lowest possible quantum numbers in both boxes? b Does this ratio stay the same if the quantum numbers are not the lowest possible values?arrow_forwarda For a pendulum having classical frequency of 1.00s1, what is the energy difference in J between quantized energy levels? b Calculate the wavelength of light that must be absorbed in order for the pendulum to go from one level to another. c Can you determine in what region of the electromagnetic spectrum such a wavelength belongs? d Comment on your results for parts a and b based on your knowledge of the state of science in early twentieth century. Why wasnt the quantum mechanical behavior of nature noticed?arrow_forwardHow is the Bohr theory of the hydrogen atom inconsistent with the uncertainty principle? In fact, it was this inconsistency, along with the theorys limited application to non-hydrogen-like systems, that limited Bohrs theory.arrow_forward
- The energies of macroscopic objects, as well as those of microscopic objects, are quantized, but the effects of the quantization are not seen because the difference in energy between adjacent states is so small. Apply Bohr’s quantization of angular momentum to the revolution of Earth (mass6.01024kg) , which moves with a speed of 3.0104ms1 in a circular orbit (radius1.51011m) about the sun. The sun can be treated as fixed. Calculate the value of the quantum number n for the present state of the Earthsun system. What would be the effect of an increase in n by 1?arrow_forwardThe wave function of an electron in the lowest (that is, ground) state of the hydrogen atom is (r)=( 1 a 0 3 )1/2exp(r a 0 )ao=0.5291010m (a) What is the probability of finding the electron inside a sphere of volume 1.0pm2 , centered at the nucleus (1pm=1012m) ? (b) What is the probability of finding the electron in a volume of 1.0pm2 at a distance of 52.9 pm from the nucleus, in a fixed but arbitrary direction? (c) What is the probability of finding the electron in a spherical shell of 1.0 pm in thickness, at a distance of 52.9 pm from the nucleus?arrow_forwardBased on the trend shown in Figure 11.5, draw the probability distribution of a harmonic oscillator wavefunction that has a very high value of n. Explain how this is consistent with the correspondence principle.arrow_forward
- A 25-kg child is on a merry-go-round/calliope, going around and around in a large circle that has a radius of 8meters. The child has an angular momentum of 600kgm2/s. a From these facts, estimate the approximate quantum number for the angular momentum the child has. b Estimate the quantized amount of energy the child has in this situation. How does this compare to the childs classical energy? What principle does this illustrate?arrow_forwardUsing Table 5.2, write down the mathematical expression for the 2px wave function for an electronically excited H atom. Estimate the probability of finding the 2px electron if you look in a cubical box of volume of 0.8(pm)3 centered at a distance of 0.5001010m in the =/2 , =0 direction. Does this probability change as you change ? At what angles is the probability of finding the electron smallest and at what angles is the probability the largest? (Note that =2 is the same location as =0 , so don’t double count.)arrow_forwardUse the mathematical expression for the 2pz wave function of a one-electron atom (see Table 5.2) to show that the probability of finding an electron in that orbital anywhere in the x-y plane is 0. What are the nodal planes for a dxz orbital and for a dx2y2 orbital?arrow_forward
- Electron microscopes operate on the fact that electrons act as waves. A typical electron kinetic energy is 100keV 1eV=1.6021019J. What is the wavelength of such an electron? Ignore relativistic effects.arrow_forwardIn the Stern-Gerlach experiment, silver atoms were used. This was a good choice, as it turned out. Using the electron configuration of silver atoms, explain why silver was a good candidate for being able to observe the intrinsic angular momentum of the electron. Hint: Dont use the aufbau principle to determine the electron configuration of Ag, because its one of the exceptions. Look up the exact electron configuration in a table.arrow_forwardCalculate the energies of an electron in the fourth, fifth, and sixth energy levels of the Bohr hydrogen atom.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
The Bohr Model of the atom and Atomic Emission Spectra: Atomic Structure tutorial | Crash Chemistry; Author: Crash Chemistry Academy;https://www.youtube.com/watch?v=apuWi_Fbtys;License: Standard YouTube License, CC-BY