A metal can containing condensed mushroom soup has mass 215 g, height 10.8 cm, and diameter 6.38 cm. It is placed at rest on its side at the top of a 3.00-m-long incline that is at 25.0° to the horizontal and is then released to roll straight down. It reaches the bottom of the incline after 1.50 s. (a) Assuming mechanical energy conservation, calculate the moment of inertia of the can. (b) Which pieces of data, if any, are unnecessary for calculating the solution? (c) Why can’t the moment of inertia be calculated from I = 1 2 m r 2 for the cylindrical can?
A metal can containing condensed mushroom soup has mass 215 g, height 10.8 cm, and diameter 6.38 cm. It is placed at rest on its side at the top of a 3.00-m-long incline that is at 25.0° to the horizontal and is then released to roll straight down. It reaches the bottom of the incline after 1.50 s. (a) Assuming mechanical energy conservation, calculate the moment of inertia of the can. (b) Which pieces of data, if any, are unnecessary for calculating the solution? (c) Why can’t the moment of inertia be calculated from I = 1 2 m r 2 for the cylindrical can?
Solution Summary: The author explains the moment of inertia of a metal can. The formula to calculate the average velocity of the can is, v_avg=l
A metal can containing condensed mushroom soup has mass 215 g, height 10.8 cm, and diameter 6.38 cm. It is placed at rest on its side at the top of a 3.00-m-long incline that is at 25.0° to the horizontal and is then released to roll straight down. It reaches the bottom of the incline after 1.50 s. (a) Assuming mechanical energy conservation, calculate the moment of inertia of the can. (b) Which pieces of data, if any, are unnecessary for calculating the solution? (c) Why can’t the moment of inertia be calculated from
I
=
1
2
m
r
2
for the cylindrical can?
2.
1.
Tube Rating
Charts
Name:
Directions: For the given information state if the technique is safe or unsafe and why.
60 Hertz Stator Operation
Effective Focal Spot Size- 0.6 mm
Peak Kilovolts
MA
2
150
140
130
120
110
100
90
80
70
2501
60
50
40
30
.01 .02 .04.06 .1
.2
.4.6 1
8 10
Maximum Exposure Time In Seconds
Is an exposure of 80 kVp, 0.1 second and 200 mA within the limits of the single
phase, 0.6 mm focal spot tube rating chart above?
Is an exposure of 100 kVp, 0.9 second and 150 mA within the limits of the single
phase, 0.6 mm focal spot tube rating chart above?
Q: You have a CO2 laser resonator (λ = 10.6 μm). It has two curved mirrors with
R₁=10m, R2= 8m, and mirror separation /= 5m. Find:
R2-10 m
tl
Z-O
12
R1-8 m
1. Confocal parameter. b= 21w2/2 =√1 (R1-1)(R2-1)(R1+R2-21)/R1+R2-21)
2. Beam waist at t₁ & t2-
3. Waist radius (wo).
4.
5.
The radius of the laser beam outside the resonator and about 0.5m from R₂-
Divergence angle.
6. Radius of curvature for phase front on the mirrors R₁ & R2-
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.