
Concept explainers
(a)
The speed of the skateboarder at the bottom of the half pipe.
(a)

Answer to Problem 84P
The speed of the skateboarder at the bottom of the half pipe is
Explanation of Solution
The total energy of the system is conserved. Since the skateboarder is starting from rest the initial kinetic energy will be zero, and when he reaches at the bottom of the half pipe the potential energy will be zero. Thus the potential energy is being converted to kinetic energy.
Write the conservation equation for energy.
Here,
Substitute,
Here,
Rearrange to obtain an expression for
Conclusion
Substitute,
Therefore, the speed of the skateboarder at the bottom of the half pipe is
(b)
The
(b)

Answer to Problem 84P
The angular momentum about the center of curvature at the bottom of the half pipe is
Explanation of Solution
Write the expression for the angular momentum.
Here,
Conclusion:
Substitute,
Therefore, the angular momentum about the center of curvature at the bottom of the half pipe is
(c)
To explain why the angular momentum is a constant and kinetic energy changes when the skateboarder stand up and lift his arms after passing through the bottom point.
(c)

Answer to Problem 84P
Since there is no external torque, the angular momentum is conserved, but at the same time the chemical energy of the skateboarder is being converts to mechanical energy, hence the kinetic energy is not conserved.
Explanation of Solution
As the person stand up and lift his arms after passing through the bottom point there is no torque acting about the axis of the channel on him, and also the wheels of the skateboard prevent the tangential force acting on him. Since there is no torque and no external force the angular momentum will be kept conserved.
But as the person stand up and lift his arms after passing through the bottom point, his legs convert the chemical energy to mechanical energy required to moving forward. According to work energy theorem the work done by the skateboarder results in increasing of kinetic energy. Hence the energy of the system is not conserved.
Conclusion:
Therefore, since there is no external torque, the angular momentum is conserved, but at the same time the chemical energy of the skateboarder is being converts to mechanical energy, hence the kinetic energy is not conserved.
(d)
The speed of the skateboarder immediately after he stood up.
(d)

Answer to Problem 84P
The speed of the skateboarder immediately after he stood up is
Explanation of Solution
Consider equation (II) to obtain the answer.
Conclusion:
Substitute,
Therefore, the speed of the skateboarder immediately after he stood up is
(e)
The amount of chemical energy converted to mechanical energy.
(e)

Answer to Problem 84P
The amount of chemical energy converted to mechanical energy is
Explanation of Solution
From point B to C chemical energy is being converted to mechanical energy. the total energy in this case is also a constant.
Write the equation for the conservation of energy from point B to C.
Here,
Substitute,
Here,
Conclusion:
Substitute,
Therefore, the amount of chemical energy converted to mechanical energy is
Want to see more full solutions like this?
Chapter 10 Solutions
Principles of Physics: A Calculus-Based Text
- An infinitely long line of charge has linear charge density 4.00×10−12 C/m . A proton (mass 1.67×10−−27 kg, charge +1.60×10−19 C) is 18.0 cm from the line and moving directly toward the line at 4.10×103 m/s . How close does the proton get to the line of charge?arrow_forwardat a certain location the horizontal component of the earth’s magnetic field is 2.5 x 10^-5 T due north A proton moves eastward with just the right speed so the magnetic force on it balances its weight. Find the speed of the proton.arrow_forwardExample In Canada, the Earth has B = 0.5 mT, pointing north, 70.0° below the horizontal. a) Find the magnetic force on an oxygen ion (O) moving due east at 250 m/s b) Compare the |FB| to |FE| due to Earth's fair- weather electric field (150 V/m downward).arrow_forward
- Three charged particles are located at the corners of an equilateral triangle as shown in the figure below (let q = 2.20 µC, and L = 0.810 m). Calculate the total electric force on the 7.00-µC charge. What is the magnitude , what is the direction?arrow_forward(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 9.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol. (b) Imagine adding electrons to the pin until the negative charge has the very large value 2.00 mC. How many electrons are added for every 109 electrons already present?arrow_forward(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 13.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol.arrow_forward
- 8 Two moving charged particles exert forces on each other because each creates a magnetic field that acts on the other. These two "Lorentz" forces are proportional to vix (2 xr) and 2 x (vi x-r), where is the vector between the particle positions. Show that these two forces are equal and opposite in accordance with Newton's third law if and only if rx (vi × 2) = 0.arrow_forward6 The force = +3 + 2k acts at the point (1, 1, 1). Find the torque of the force about (a) (b) the point (2, -1, 5). Careful about the direction of ŕ between the two points. the line = 21-+5k+ (i-+2k)t. Note that the line goes through the point (2, -1, 5).arrow_forward5 Find the total work done by forces A and B if the object undergoes the displacement C. Hint: Can you add the two forces first?arrow_forward
- 1 F2 F₁ -F₁ F6 F₂ S A Work done on the particle as it moves through the displacement is positive. True False by the force Farrow_forwardA student measuring the wavelength produced by a vapour lamp directed the lightthrough two slits with a separation of 0.20 mm. An interference pattern was created on the screen,3.00 m away. The student found that the distance between the first and the eighth consecutive darklines was 8.0 cm. Draw a quick picture of the setup. What was the wavelength of the light emittedby the vapour lamp?arrow_forwardA ball is tied to one end of a string. The other end of the string is fixed. The ball is set in motion around a vertical circle without friction. At the top of the circle, the ball has a speed of ; = √√ Rg, as shown in the figure. At what angle should the string be cut so that the ball will travel through the center of the circle? The path after string is cut Rarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University





