Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 80P
To determine
The reason why it is impossible to slide the cabinet over a long distance by keeping the rope over his shoulder.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A uniform spool is suspended from a vertical wall by a string attached to the spool’s thin axle. The axle is horizontal, as shown below.
The wall is smooth, so it exerts no frictional force on the spool. The tension in the string is 2.6 N. What is the weight of the spool?
a
1.2 N
b
1.0 N
c
0.5 N
d
2.4 N
e
2.6 N
The chain binder is used to secure loads of logs, lumber, pipe, and the like. If the tension T1 is 2.6 kN when θ = 22°, determine the force P required on the lever and the corresponding tension T2 for this position. Assume that the surface under A is perfectly smooth.Assume a = 110 mm, b = 430 mm.
An engineering student suspends his 300 N tool box by using a system of ropes and pulleys, as shown in the figure. The mass M1 is
equal to 20.0 kg. The angle e and the mass M2 have been chosen so that the entire system remains at rest. Assume that the
pulleys are all ideal and frictionless, and that the cords have negligible weight.
A+y
T2
M2
Mi
TOOL BOX
33. The angle 0 is equal to
A. 33.2°.
В. 3.8°.
C. 56.8°.
D. 49.2°.
E. 40.8°.
34. The mass M2 is equal to
A. 30.6 kg.
B. 20.0 kg.
C. 40.0 kg.
D. 50.6 kg.
E. 36.6 kg.
Chapter 10 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 10.1 - A rigid object is rotating in a counterclockwise...Ch. 10.2 - Consider again the pairs of angular positions for...Ch. 10.3 - Ethan and Joseph are riding on a merry-go-round....Ch. 10.4 - Prob. 10.4QQCh. 10.5 - (i) If you are trying to loosen a stubborn screw...Ch. 10.7 - Prob. 10.6QQCh. 10.9 - A solid sphere and a hollow sphere have the same...Ch. 10.10 - A competitive diver leaves the diving board and...Ch. 10.12 - Two items A and B are placed at the top of an...Ch. 10 - A cyclist rides a bicycle with a wheel radius of...
Ch. 10 - Prob. 2OQCh. 10 - Prob. 3OQCh. 10 - Prob. 4OQCh. 10 - Assume a single 300-N force is exerted on a...Ch. 10 - Consider an object on a rotating disk a distance r...Ch. 10 - Answer yes or no to the following questions. (a)...Ch. 10 - Figure OQ10.8 shows a system of four particles...Ch. 10 - As shown in Figure OQ10.9, a cord is wrapped onto...Ch. 10 - Prob. 10OQCh. 10 - Prob. 11OQCh. 10 - A constant net torque is exerted on an object....Ch. 10 - Let us name three perpendicular directions as...Ch. 10 - A rod 7.0 m long is pivoted at a point 2.0 m from...Ch. 10 - Prob. 15OQCh. 10 - A 20.0-kg horizontal plank 4.00 m long rests on...Ch. 10 - (a) What is the angular speed of the second hand...Ch. 10 - Prob. 2CQCh. 10 - Prob. 3CQCh. 10 - Which of the entries in Table 10.2 applies to...Ch. 10 - Prob. 5CQCh. 10 - Prob. 6CQCh. 10 - Prob. 7CQCh. 10 - Prob. 8CQCh. 10 - Three objects of uniform densitya solid sphere, a...Ch. 10 - Prob. 10CQCh. 10 - If the torque acting on a particle about an axis...Ch. 10 - Prob. 12CQCh. 10 - Stars originate as large bodies of slowly rotating...Ch. 10 - Prob. 14CQCh. 10 - Prob. 15CQCh. 10 - Prob. 16CQCh. 10 - Prob. 17CQCh. 10 - During a certain time interval, the angular...Ch. 10 - A bar on a hinge starts from rest and rotates with...Ch. 10 - Prob. 3PCh. 10 - Prob. 4PCh. 10 - The tub of a washer goes into its spin cycle,...Ch. 10 - Why is the following situation impossible?...Ch. 10 - An electric motor rotating a workshop grinding...Ch. 10 - Prob. 8PCh. 10 - Prob. 9PCh. 10 - A wheel 2.00 m in diameter lies in a vertical...Ch. 10 - A disk 8.00 cm in radius rotates at a constant...Ch. 10 - Make an order-of-magnitude estimate of the number...Ch. 10 - A car traveling on a flat (unbanked), circular...Ch. 10 - Prob. 14PCh. 10 - A digital audio compact disc carries data, each...Ch. 10 - Figure P10.16 shows the drive train of a bicycle...Ch. 10 - Big Ben, the Parliament tower clock in London, has...Ch. 10 - Rigid rods of negligible mass lying along the y...Ch. 10 - A war-wolf, or trebuchet, is a device used during...Ch. 10 - Prob. 20PCh. 10 - Review. Consider the system shown in Figure P10.21...Ch. 10 - The fishing pole in Figure P10.22 makes an angle...Ch. 10 - Find the net torque on the wheel in Figure P10.23...Ch. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - A force of F=(2.00i+3.00j) N is applied to an...Ch. 10 - A uniform beam resting on two pivots has a length...Ch. 10 - Prob. 29PCh. 10 - Prob. 30PCh. 10 - Figure P10.31 shows a claw hammer being used to...Ch. 10 - Prob. 32PCh. 10 - A 15.0-m uniform ladder weighing 500 N rests...Ch. 10 - A uniform ladder of length L and mass m1 rests...Ch. 10 - BIO The arm in Figure P10.35 weighs 41.5 N. The...Ch. 10 - A crane of mass m1 = 3 000 kg supports a load of...Ch. 10 - An electric motor turns a flywheel through a drive...Ch. 10 - Prob. 38PCh. 10 - Prob. 39PCh. 10 - In Figure P10.40, the hanging object has a mass of...Ch. 10 - A potters wheela thick stone disk of radius 0.500...Ch. 10 - A model airplane with mass 0.750 kg is tethered to...Ch. 10 - Consider two objects with m1 m2 connected by a...Ch. 10 - Review. An object with a mass of m = 5.10 kg is...Ch. 10 - A playground merry-go-round of radius R = 2.00 m...Ch. 10 - The position vector of a particle of mass 2.00 kg...Ch. 10 - Prob. 48PCh. 10 - Big Ben (Fig. P10.17), the Parliament tower clock...Ch. 10 - A disk with moment of inertia I1 rotates about a...Ch. 10 - Prob. 51PCh. 10 - A space station is constructed in the shape of a...Ch. 10 - Prob. 53PCh. 10 - Why is the following situation impossible? A space...Ch. 10 - The puck in Figure 10.25 has a mass of 0.120 kg....Ch. 10 - A student sits on a freely rotating stool holding...Ch. 10 - Prob. 57PCh. 10 - Prob. 58PCh. 10 - A cylinder of mass 10.0 kg rolls without slipping...Ch. 10 - A uniform solid disk and a uniform hoop are placed...Ch. 10 - A metal can containing condensed mushroom soup has...Ch. 10 - A tennis ball is a hollow sphere with a thin wall....Ch. 10 - Prob. 63PCh. 10 - Review. A mixing beater consists of three thin...Ch. 10 - A long, uniform rod of length L and mass M is...Ch. 10 - The hour hand and the minute hand of Big Ben, the...Ch. 10 - Two astronauts (Fig. P10.67), each having a mass...Ch. 10 - Two astronauts (Fig. P10.67), each having a mass...Ch. 10 - Prob. 69PCh. 10 - Prob. 70PCh. 10 - The reel shown in Figure P10.71 has radius R and...Ch. 10 - Review. A block of mass m1 = 2.00 kg and a block...Ch. 10 - A stepladder of negligible weight is constructed...Ch. 10 - A stepladder of negligible weight is constructed...Ch. 10 - A wad of sticky clay with mass m and velocity vi...Ch. 10 - Prob. 76PCh. 10 - Prob. 77PCh. 10 - Review. A string is wound around a uniform disk of...Ch. 10 - Prob. 79PCh. 10 - Prob. 80PCh. 10 - A projectile of mass m moves to the right with a...Ch. 10 - Figure P10.82 shows a vertical force applied...Ch. 10 - A solid sphere of mass m and radius r rolls...Ch. 10 - Prob. 84PCh. 10 - BIO When a gymnast performing on the rings...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Children playing pirates have suspended a uniform wooden plank with mass M = 14.8 kg, length l = 2.40 m, and angle 0 = 35.0°, as shown in the figure. What is the tension in each of the three ropes when Sophia, with a mass of m = 21.6 kg, is made to "walk the plank" and is d = 1.5 m from reaching the end of the plank? F3 = F2 N F1 35.0° I| ||arrow_forwardF. y M. mg AF FY f.Y Fixle Axis The ladder in the picture has a mass of 39 kilograms and a length 3.4 meters. What is the normal force pushing the ladder up from the floor? This force is labeled Ff v in the picture. FN Assume that the ladder's weight is evenly distributed, so it can be treated as a single force through the middle. If the ladder is at a 70° angle from the ground, what is the torque exerted by the weight (using the floor as the pivot point)? N.m The torque from the ladder must be balanced by the torque caused by the normal force on the wall, labeled Fw in the picture. Calculate this force. Fw = The normal force from the wall must be balanced by the friction force from the floor, labeled Ff y in the picture Determine thnarrow_forwardA 20 kg dog stands on a 40 kg platform that is supported by two ropes. One rope is attached to the right edge of the platform and the other is attached 50 cm from the left edge of the platform. The dog sits 50 cm from the right edge of the platform. A 5.0 kg cat jumps up, but is wary of the dog abs stays all the way on the left edge. The platform is 2.0 m long. What is the tension in each rope?arrow_forward
- Scientists have studied how snakes grip and climb ropes. In one study, they found that an important characteristic of a rope is its “compliance”— that is, how easily the rope, while under tension, can be flexed. As shown how scientists measured a rope’s compliance by attaching it to two strings, each supporting an identical mass m. The strings contort the rope so that its middle section lies at angle θ. For θ = 30° and m = 100 g, what are the tensions T1 and T2 in the upper and middle parts of the rope?arrow_forwardFive hockey pucks are sliding across frictionless ice. The drawing shows a top view of the pucks and the three forces that act on each one. The forces can have different magnitudes (F, 2F, or 3F), and can be applied at different points on the puck. Only one of the five pucks could be in equilibrium. Which one?arrow_forwardA force F making an angle of 30° with the horizontal maintains a box with mass m = 8 kg in static equilibrium on a frictionless vertical wall. What is the magnitude of the applied force? Use g = 10 m/s?. %3D O 80 N 120 N O 140 N O 160 N O 100 Narrow_forward
- A 45kg Box is at rest on a 2 meter long board. That end of the board is slowly raised at an incline until the box starts sliding. This point is at 34 degrees, held constant. Given that the kinetic friction is 0.50 N. Please help me solve how long will the box take to reach the bottom of the board?arrow_forwardA 12-kg, 1.0-m-long uniform beam is attached to a wall by a cable. The beam is free to pivot at the point where it attaches to the wall. However, it remains motionless. What is the magnitude of the tension force in the cable?arrow_forwardA garage door is mounted on an overhead rail as shown below. The wheels at A and B have rusted so that they do not roll, but rather slide along the track. The coefficient of kinetic friction is 0.50. The distance between the wheels is 2.00 m, and each are 0.50 from the vertical sides of the door. The door is uniform and weighs 977 N. It is pushed to the left at constant speed by an external horizontal force. If the distance h is 1.54 m: a. What is the vertical component of the force exerted on the wheel A by the track? b. What is the vertical component of the force exerted on the wheel B by the track? c. Find the maximum value h can have without causing one wheel to leave the track. A В K 2.00 m h k- 3.00 m Figure 3. The two wheel track of a rusted garage door.arrow_forward
- A force in the +-direction with magnitude F(x)= 18.0 N (0.530 N/m)x is applied to a 7.70 kg box that is sitting on the horizontal, frictionless surface of a frozen lake. F(x) is the only horizontal force on the box. For related problemsolving tips and strategies, you may want to view a Video Tutor Solution of Motion with a varying force. If the box is initially at rest at x = 0, what is its speed after it has traveled 16.0 m? Express your answer with the appropriate units. v=8.166 μA m S ? Submit Previous Answers Request Answer X Incorrect; Try Again; 29 attempts remainingarrow_forwardTwo blocks of mass m 10 kg and mg 5 kg are connected by a massless string that passes over a pulley as shown in the figure. The system is in static equilibrium. There is friction between m and the inclined surface (4=0.4). Neglect the friction between the string and the pulley. Determine the static friction force in the system. 10 kg 5.0 kg 37 49 0 N 29.3 N 39.2 N 33.9 N 9.98 Narrow_forwardFive hockey pucks are sliding across frictionless ice. The drawing shows a top view of the pucks and the three forces that act on each one. The forces can have different magnitudes (F, 2F, or 3F), and can be applied at different points on the puck. Only one of the five pucks could be in equilibrium. Which one? 3F 3F 2F 2F 2F 2F F 2F (1) (3) (4) (5) 3 4 2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY