Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 59P
A cylinder of mass 10.0 kg rolls without slipping on a horizontal surface. At a certain instant, its center of mass has a speed of 10.0 m/s. Determine
- (a) the translational kinetic energy of its center of mass,
- (b) the rotational kinetic energy about its center of mass, and
- (c) its total energy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A cylinder of mass 10.0 kg rolls without slipping on a horizontal surface. At a certain instant, its center of mass has a speed of 10.0 m/s. Determine (a) the translational kinetic energy of its center of mass, (b) the rotational kinetic energy about its center of mass, and (c) its total energy.
A cylinder of mass 14.0 kg rolls without slipping on a horizontal surface. At a certain instant its center of mass has a speed of 9.0 m/s.
(a) Determine the translational kinetic energy of its center of mass.
(b) Determine the rotational kinetic energy about its center of mass.
(c) Determine its total energy.
A solid, uniform disk of radius 0.250 m and mass 55.9 kg rolls down a ramp of length 4.90 m that makes an angle of 14.0° with the horizontal. The disk starts from rest from the top of the ramp.
(a) Find the speed of the disk's center of mass when it reaches the bottom of the ramp. m/s(b) Find the angular speed of the disk at the bottom of the ramp. rad/s
Chapter 10 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 10.1 - A rigid object is rotating in a counterclockwise...Ch. 10.2 - Consider again the pairs of angular positions for...Ch. 10.3 - Ethan and Joseph are riding on a merry-go-round....Ch. 10.4 - Prob. 10.4QQCh. 10.5 - (i) If you are trying to loosen a stubborn screw...Ch. 10.7 - Prob. 10.6QQCh. 10.9 - A solid sphere and a hollow sphere have the same...Ch. 10.10 - A competitive diver leaves the diving board and...Ch. 10.12 - Two items A and B are placed at the top of an...Ch. 10 - A cyclist rides a bicycle with a wheel radius of...
Ch. 10 - Prob. 2OQCh. 10 - Prob. 3OQCh. 10 - Prob. 4OQCh. 10 - Assume a single 300-N force is exerted on a...Ch. 10 - Consider an object on a rotating disk a distance r...Ch. 10 - Answer yes or no to the following questions. (a)...Ch. 10 - Figure OQ10.8 shows a system of four particles...Ch. 10 - As shown in Figure OQ10.9, a cord is wrapped onto...Ch. 10 - Prob. 10OQCh. 10 - Prob. 11OQCh. 10 - A constant net torque is exerted on an object....Ch. 10 - Let us name three perpendicular directions as...Ch. 10 - A rod 7.0 m long is pivoted at a point 2.0 m from...Ch. 10 - Prob. 15OQCh. 10 - A 20.0-kg horizontal plank 4.00 m long rests on...Ch. 10 - (a) What is the angular speed of the second hand...Ch. 10 - Prob. 2CQCh. 10 - Prob. 3CQCh. 10 - Which of the entries in Table 10.2 applies to...Ch. 10 - Prob. 5CQCh. 10 - Prob. 6CQCh. 10 - Prob. 7CQCh. 10 - Prob. 8CQCh. 10 - Three objects of uniform densitya solid sphere, a...Ch. 10 - Prob. 10CQCh. 10 - If the torque acting on a particle about an axis...Ch. 10 - Prob. 12CQCh. 10 - Stars originate as large bodies of slowly rotating...Ch. 10 - Prob. 14CQCh. 10 - Prob. 15CQCh. 10 - Prob. 16CQCh. 10 - Prob. 17CQCh. 10 - During a certain time interval, the angular...Ch. 10 - A bar on a hinge starts from rest and rotates with...Ch. 10 - Prob. 3PCh. 10 - Prob. 4PCh. 10 - The tub of a washer goes into its spin cycle,...Ch. 10 - Why is the following situation impossible?...Ch. 10 - An electric motor rotating a workshop grinding...Ch. 10 - Prob. 8PCh. 10 - Prob. 9PCh. 10 - A wheel 2.00 m in diameter lies in a vertical...Ch. 10 - A disk 8.00 cm in radius rotates at a constant...Ch. 10 - Make an order-of-magnitude estimate of the number...Ch. 10 - A car traveling on a flat (unbanked), circular...Ch. 10 - Prob. 14PCh. 10 - A digital audio compact disc carries data, each...Ch. 10 - Figure P10.16 shows the drive train of a bicycle...Ch. 10 - Big Ben, the Parliament tower clock in London, has...Ch. 10 - Rigid rods of negligible mass lying along the y...Ch. 10 - A war-wolf, or trebuchet, is a device used during...Ch. 10 - Prob. 20PCh. 10 - Review. Consider the system shown in Figure P10.21...Ch. 10 - The fishing pole in Figure P10.22 makes an angle...Ch. 10 - Find the net torque on the wheel in Figure P10.23...Ch. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - A force of F=(2.00i+3.00j) N is applied to an...Ch. 10 - A uniform beam resting on two pivots has a length...Ch. 10 - Prob. 29PCh. 10 - Prob. 30PCh. 10 - Figure P10.31 shows a claw hammer being used to...Ch. 10 - Prob. 32PCh. 10 - A 15.0-m uniform ladder weighing 500 N rests...Ch. 10 - A uniform ladder of length L and mass m1 rests...Ch. 10 - BIO The arm in Figure P10.35 weighs 41.5 N. The...Ch. 10 - A crane of mass m1 = 3 000 kg supports a load of...Ch. 10 - An electric motor turns a flywheel through a drive...Ch. 10 - Prob. 38PCh. 10 - Prob. 39PCh. 10 - In Figure P10.40, the hanging object has a mass of...Ch. 10 - A potters wheela thick stone disk of radius 0.500...Ch. 10 - A model airplane with mass 0.750 kg is tethered to...Ch. 10 - Consider two objects with m1 m2 connected by a...Ch. 10 - Review. An object with a mass of m = 5.10 kg is...Ch. 10 - A playground merry-go-round of radius R = 2.00 m...Ch. 10 - The position vector of a particle of mass 2.00 kg...Ch. 10 - Prob. 48PCh. 10 - Big Ben (Fig. P10.17), the Parliament tower clock...Ch. 10 - A disk with moment of inertia I1 rotates about a...Ch. 10 - Prob. 51PCh. 10 - A space station is constructed in the shape of a...Ch. 10 - Prob. 53PCh. 10 - Why is the following situation impossible? A space...Ch. 10 - The puck in Figure 10.25 has a mass of 0.120 kg....Ch. 10 - A student sits on a freely rotating stool holding...Ch. 10 - Prob. 57PCh. 10 - Prob. 58PCh. 10 - A cylinder of mass 10.0 kg rolls without slipping...Ch. 10 - A uniform solid disk and a uniform hoop are placed...Ch. 10 - A metal can containing condensed mushroom soup has...Ch. 10 - A tennis ball is a hollow sphere with a thin wall....Ch. 10 - Prob. 63PCh. 10 - Review. A mixing beater consists of three thin...Ch. 10 - A long, uniform rod of length L and mass M is...Ch. 10 - The hour hand and the minute hand of Big Ben, the...Ch. 10 - Two astronauts (Fig. P10.67), each having a mass...Ch. 10 - Two astronauts (Fig. P10.67), each having a mass...Ch. 10 - Prob. 69PCh. 10 - Prob. 70PCh. 10 - The reel shown in Figure P10.71 has radius R and...Ch. 10 - Review. A block of mass m1 = 2.00 kg and a block...Ch. 10 - A stepladder of negligible weight is constructed...Ch. 10 - A stepladder of negligible weight is constructed...Ch. 10 - A wad of sticky clay with mass m and velocity vi...Ch. 10 - Prob. 76PCh. 10 - Prob. 77PCh. 10 - Review. A string is wound around a uniform disk of...Ch. 10 - Prob. 79PCh. 10 - Prob. 80PCh. 10 - A projectile of mass m moves to the right with a...Ch. 10 - Figure P10.82 shows a vertical force applied...Ch. 10 - A solid sphere of mass m and radius r rolls...Ch. 10 - Prob. 84PCh. 10 - BIO When a gymnast performing on the rings...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A thin rod of length 2.65 m and mass 13.7 kg is rotated at anangular speed of 3.89 rad/s around an axis perpendicular to therod and through one of its ends. Find the magnitude of the rodsangular momentum.arrow_forwardThe position vector of a particle of mass 2.00 kg as a function of time is given by r=(6.00i+5.00tj), where r is in meters and t is in seconds. Determine the angular momentum of the particle about the origin as a function of time.arrow_forwardA solid cylinder of mass 2.0 kg and radius 20 cm is rotating counterclockwise around a vertical axis through its center at 600 rev/min. A second solid cylinder of the same mass and radius is rotating clockwise around the same vertical axis at 900 rev/min. If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity of the combination?arrow_forward
- A wad of sticky clay with mass m and velocity vi is fired at a solid cylinder of mass M and radius R (Fig. P10.75). The cylinder is initially at rest and is mounted on a fixed horizontal axle that runs through its center of mass. The line of motion of the projectile is perpendicular to the axle and at a distance d R from the center. (a) Find the angular speed of the system just after the clay strikes and sticks to the surface of the cylinder. (b) Is the mechanical energy of the claycylinder system constant in this process? Explain your answer. (c) Is the momentum of the claycylinder system constant in this process? Explain your answer. Figure P10.75arrow_forwardTwo astronauts (Fig. P10.67), each having a mass M, are connected by a rope of length d having negligible mass. They are isolated in space, orbiting their center of mass at speeds v. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum of the two-astronaut system and (b) the rotational energy of the system. By pulling on the rope, one of the astronauts shortens the distance between them to d/2. (c) What is the new angular momentum of the system? (d) What are the astronauts new speeds? (e) What is the new rotational energy of the system? (f) How much chemical potential energy in the body of the astronaut was converted to mechanical energy in the system when he shortened the rope? Figure P10.67 Problems 67 and 68.arrow_forwardA uniform disk of mass m = 10.0 kg and radius r = 34.0 cm mounted on a frictionlessaxle through its center, and initially at rest, isacted upon by two tangential forces of equalmagnitude F, acting on opposite sides of itsrim until a point on the rim experiences acentripetal acceleration of 4.00 m/s2 (Fig.P13.73). a. What is the angular momentumof the disk at this time? b. If F = 2.00 N, howlong do the forces have to be applied to thedisk to achieve this centripetal acceleration? FIGURE P13.73arrow_forward
- The velocity of a particle of mass m = 2.00 kg is given by v= 5.10 + 2.40 m /s. What is the angular momentumof the particle around the origin when it is located atr= 8.60 3.70 m?arrow_forwardA space station is constructed in the shape of a hollow ring of mass 5.00 104 kg. Members of the crew walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 100 m. At rest when constructed, the ring is set rotating about its axis so that the people inside experience an effective free-fall acceleration equal to g. (See Fig. P10.52.) The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring. (a) What angular momentum does the space station acquire? (b) For what time interval must the rockets be fired if each exerts a thrust of 125 N? Figure P10.52 Problems 52 and 54.arrow_forwardA student sits on a freely rotating stool holding two dumbbells, each of mass 3.00 kg (Fig. P10.56). When his arms are extended horizontally (Fig. P10.56a), the dumbbells are 1.00 m from the axis of rotation and the student rotates with an angular speed of 0.750 rad/s. The moment of inertia of the student plus stool is 3.00 kg m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.300 m from the rotation axis (Fig. P10.56b). (a) Find the new angular speed of the student. (b) Find the kinetic energy of the rotating system before and after he pulls the dumbbells inward. Figure P10.56arrow_forward
- A buzzard (m = 9.29 kg) is flying in circular motion with aspeed of 8.44 m/s while viewing its meal below. If the radius ofthe buzzards circular motion is 8.00 m, what is the angularmomentum of the buzzardaround the center of its motion?arrow_forwardA system consists of a disk of mass 2.0 kg and radius 50 cm upon which is mounted an annular cylinder of mass 1.0 kg with inner radius 20 cm and outer radius 30 cm (see below). The system rotates about an axis through the center of the disk and annular cylinder at 10 rev/s. (a) What is the moment of inertia of the system? (b) What is its rotational kinetic energy?arrow_forwardIf the torque acting on a particle about an axis through a certain origin is zero, what can you say about its angular momentum about that axis?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License