Chemistry for Engineering Students
3rd Edition
ISBN: 9781285199023
Author: Lawrence S. Brown, Tom Holme
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 10.86PAE
The enthalpy of vaporization for water is 40.65 kJ mol-1. As a design engineer for a project in a desert climate, you are exploring the option of using evaporative cooling.
(a) If the air has an average volumetric heat capacity of 0.00130 J cm-3 K-1, what is the minimum mass of water that would need to evaporate in order to cool a 5 m? 5 m room with a 3 m ceiling by 5°F using this method?
(b) Is this a spontaneous or nonspontaneous process?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
a. Determine the electrochemical potential of the following cell using
E°Mg2+/Mg = -2.362 V.
Mg | Mg2+ (a=104) || H* (a = 4) | H2 (p
= 0.5 bar) | Pt
b. A galvanic chain consists of Co²+ / Co and Ag+ / Ag half-cells with
EºCo²+/Co = -0.282 V and Eº Ag+/Ag = 0.799 V. Determine which half-cell will be
reduced and which one will be oxidised. Furthermore, calculate the electrochemical
potential as well as the equilibrium constant of the whole cell at
i. [Co²+] = 0.1 M and [Ag+] = 0.5 M
ii. [Co²+] = 0.001 M and [Ag*] = 1.5 M
The equilibrium voltage of the following cell has been measured at 0.522 V at 25 °C.
Pt | H2, g❘ HClaq || AgClaq | Ags
State the redox reactions present in this cell. Calculate the pH value of the electrolyte
solution with KL, AgCl = 1.96 · 10-10 mol² / L². Assume that the concentrations of H+ and
Clare equal.
Here are the energies (in kcal/mol) for staggered and eclipsed interactions
for CH, CC, and CBr bonds
eclipsed (0°) staggered (60°)
bonds
CH/CH
1.0
0.0
CH/CC
1.3
0.0
Br:
CC/CC
3.0
0.9
Br
CH/CBr
1.8
0.0
CC / CBr
3.3
1.0
CBr / CBr
3.7
1.2
a) I've drawn the Newman projection for one of the staggered conformations of the molecule
above, looking down the C2-C3 bond. Draw Newman projections for the other two staggered
and the three eclipsed conformations (in order).
CH₂
H3C.
H'
H
Br
b) Calculate the relative energies for each of the conformations and write them below each
conformation.
Chapter 10 Solutions
Chemistry for Engineering Students
Ch. 10 - Prob. 1COCh. 10 - . explain the concept of entropy in your own...Ch. 10 - Prob. 3COCh. 10 - . state the second law of thermodynamics in words...Ch. 10 - Prob. 5COCh. 10 - Prob. 6COCh. 10 - Prob. 7COCh. 10 - Prob. 8COCh. 10 - Prob. 9COCh. 10 - Prob. 10CO
Ch. 10 - Prob. 10.1PAECh. 10 - Prob. 10.2PAECh. 10 - Prob. 10.3PAECh. 10 - Prob. 10.4PAECh. 10 - Prob. 10.5PAECh. 10 - Use the web to learn how many pounds of plastics...Ch. 10 - On the basis of your experience, predict which of...Ch. 10 - In the thermodynamic definition of a spontaneous...Ch. 10 - 1f the combustion of butane is spontaneous, how...Ch. 10 - Identify each of the processes listed as...Ch. 10 - Identify each of the processes listed as...Ch. 10 - Athletic trainers use instant ice packs that can...Ch. 10 - Are any of the following exothermic processes not...Ch. 10 - Enthalpy changes often help predict whether or not...Ch. 10 - When a fossil fuel burns, is that fossil fuel the...Ch. 10 - Murphy's law is a whimsical rule that says that...Ch. 10 - Prob. 10.17PAECh. 10 - Prob. 10.18PAECh. 10 - Prob. 10.19PAECh. 10 - Some games include dice with more than six sides....Ch. 10 - How does probability relate to spontaneity?Ch. 10 - Prob. 10.22PAECh. 10 - For each pair of items, tell which has the higher...Ch. 10 - Prob. 10.24PAECh. 10 - Prob. 10.25PAECh. 10 - For each process, tell whether the entropy change...Ch. 10 - Without doing a calculation, predict whether the...Ch. 10 - For the following chemical reactions, predict the...Ch. 10 - Prob. 10.29PAECh. 10 - Prob. 10.30PAECh. 10 - Prob. 10.31PAECh. 10 - Prob. 10.32PAECh. 10 - According to Lambert, leaves lying in the yard and...Ch. 10 - Prob. 10.34PAECh. 10 - What happens to the entropy of the universe during...Ch. 10 - Prob. 10.36PAECh. 10 - One statement of the second law of thermodynamics...Ch. 10 - Prob. 10.38PAECh. 10 - How does the second law of thermodynamics explain...Ch. 10 - Prob. 10.40PAECh. 10 - Prob. 10.41PAECh. 10 - Which reaction occurs with the greater increase in...Ch. 10 - Which reaction occurs with the greater increase in...Ch. 10 - Methanol is burned as fuel in some race cars. This...Ch. 10 - Limestone is predominantly CaCO3, which can...Ch. 10 - Suppose that you find out that a system has an...Ch. 10 - Use tabulated thermodynamic data to calculate the...Ch. 10 - Prob. 10.48PAECh. 10 - Calculate S for the dissolution of magnesium...Ch. 10 - Calculate the standard entropy change for the...Ch. 10 - Through photosynthesis, plants build molecules of...Ch. 10 - Find websites describing two different attempts to...Ch. 10 - Prob. 10.53PAECh. 10 - Prob. 10.54PAECh. 10 - A beaker of water at 400 C(on the left in the...Ch. 10 - Describe why it is easier to use Gto determine the...Ch. 10 - Under what conditions does G allow us to predict...Ch. 10 - There is another free energy state function, the...Ch. 10 - 10.45 Calculate G at 45°C for reactions for which...Ch. 10 - 10.46 Discuss the effect of temperature change on...Ch. 10 - The reaction CO2(g)+H2(g)CO(g)+H2O(g) is not...Ch. 10 - Prob. 10.62PAECh. 10 - Prob. 10.63PAECh. 10 - For the reaction NO(g)+NO2(g)N2O3(g) , use...Ch. 10 - 10.51 The combustion of acetylene was used in...Ch. 10 - Natural gas (methane) is being used in...Ch. 10 - Silicon forms a series of compounds analogous to...Ch. 10 - Explain why Gf of O2 (g) is zero.Ch. 10 - Using tabulated thermodynamic data, calculate G...Ch. 10 - Using tabulated thermodynamic data, calculate G...Ch. 10 - Calculate G for the dissolution of both sodium...Ch. 10 - Phosphorus exists in multiple solid phases,...Ch. 10 - 10.59 The normal melting point of benzene, C6H6,...Ch. 10 - Prob. 10.74PAECh. 10 - Estimate the temperature range over which each of...Ch. 10 - Recall that incomplete combustion of fossil fuels...Ch. 10 - During polymerization, the system usually becomes...Ch. 10 - Prob. 10.78PAECh. 10 - Prob. 10.79PAECh. 10 - The recycling of polymers represents only one...Ch. 10 - Diethyl ether is a liquid at normal temperature...Ch. 10 - Calculate the entropy change, S , for the...Ch. 10 - Gallium metal has a melting point of 29.8°C. Use...Ch. 10 - Methane can be produced from CO and H2.The process...Ch. 10 - 10.85 Iodine is not very soluble in water, but it...Ch. 10 - The enthalpy of vaporization for water is 40.65 kJ...Ch. 10 - Determine whether each of the following statements...Ch. 10 - Nickel metal reacts with carbon monoxide to form...Ch. 10 - Polyethylene has a heat capacity of 2,3027 J g-1...Ch. 10 - A key component in many chemical engineering...Ch. 10 - The reaction shown below is involved in the...Ch. 10 - Using only the data given below, determine G for...Ch. 10 - The graph below shows G as a function of...Ch. 10 - Prob. 10.94PAECh. 10 - Prob. 10.95PAECh. 10 - Prob. 10.96PAECh. 10 - Prob. 10.97PAECh. 10 - Prob. 10.98PAECh. 10 - Thermodynamics provides a way to interpret...Ch. 10 - Prob. 10.100PAECh. 10 - 10.101 Fluorine reacts with liquid water to form...Ch. 10 - 10.102 Ammonia can react with oxygen gas to form...Ch. 10 - Prob. 10.103PAECh. 10 - 10.104 (a) When a chemical bond forms, what...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 90. Draw the stereoisomers obtained from each of the following reactions: a. H₂ b. H₂ C. H₂ Pd/C Pd/C Pd/Carrow_forward36. The emission spectrum below for a one-electron (hydrogen-like) species in the gas phase shows all the lines, before they merge together, resulting from transitions to the first excited state from higher energy states. Line A has a wavelength of 434 nm. BA Increasing wavelength, λ (a) What are the upper and lower principal quantum numbers corresponding to the lines labeled A and B? (b) Identify the one-electron species that exhibits the spectrum.arrow_forwardf) The unusual molecule [2.2.2] propellane is pictured. 1) Given the bond length and bond angles in the image, what hybridization scheme best describes the carbons marked by the askerisks? 2) What types of orbitals are used in the bond between the two carbons marked by the askerisks? 3) How does this bond compare to an ordinary carbon-carbon bond (which is usually 1.54 Å long)? H₂C H₂C CH2 1.60Å ハ C. * CH₂ H₂C * C H₂ 120°arrow_forward
- Question Resonance Forms a) Draw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributor Resonance Forms a) Draw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributorarrow_forwardCan you show me or determine the longest carbon chain, which is octane? Potentially highlight it in different sections to show me, plz, or individually?arrow_forwardPLEASE ANSWER ALL PARTS!!arrow_forward
- d) Determine the formal charge on the nitrogen atom in each of the structures. NH3 NH2 N C бобкат : N N H H Н H2N-OH A B C D E F Garrow_forwardLewis Structure, Hybridization & Molecular Geometry a) Draw the Lewis Structure of the molecules; Label the hybridization of each carbon atom; Predict the approximate molecular geometry around each carbon atom. CH3CHO CH3CN b) Draw the Lewis Structure of Nitromethane; Predict the approximate molecular geometry around the nitrogen atom. CH3NO2 c) Draw the Lewis Structure; Label the hybridization of the boron atom; Predict the approximate molecular geometry. BF3 BF4arrow_forwarda. The structure of the bicarbonate (hydrogen carbonate) ion, HCO3-, HCO3 " is best described as a hybrid of several contributing resonance forms, two of which are shown here. HO :0: HO + :Ö: Bicarbonate is crucial for the control of body pH (for example, blood pH 7.4). A more self-indulgent use is in baking soda, where it serves as a source of CO2 CO2 gas, which gives bread and pastry their fluffy constituency. (i) Draw at least one additional resonance form. = (ii) Using curved "electron-pushing" arrows, show how these Lewis structures may be interconverted by movement of electron pairs. (iii) Determine which form or forms will be the major contributor(s) to the real structure of bicarbonate, explaining your answer on the basis of the criteria in Section 1-5.arrow_forward
- Calibri 11 + BIL NAME: Jaylena M A student is investigating the ctect of volume on pressure during a lab activity. The student uses the following volumes (mL). 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 30, 33, 34, 35, 38, 40, 42, 44. 46, and 50. As the volume changed they measured the following pressures (atm) 11.0, 10.5, 10.0, 9.2. 8.5, 78, 75, 7.0, 6.8, 6.5, 6.0, 5.9, 5.5, 5.0, 4.8, 4.5, 4.2, 3.9, 3.8, 3.5, 3.3, 3.2, 3.0, 2.9. What is the independent variable? Volume Imla What is the dependent variable? Pressure Jatm Use the data and make a PROPER data table. Volume 1mL) Pressure latm 110arrow_forwardDraw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributor.arrow_forward: Resonance Forms a) Draw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributor. SO₂ NO3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY