Chemistry for Engineering Students
3rd Edition
ISBN: 9781285199023
Author: Lawrence S. Brown, Tom Holme
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 10.86PAE
The enthalpy of vaporization for water is 40.65 kJ mol-1. As a design engineer for a project in a desert climate, you are exploring the option of using evaporative cooling.
(a) If the air has an average volumetric heat capacity of 0.00130 J cm-3 K-1, what is the minimum mass of water that would need to evaporate in order to cool a 5 m? 5 m room with a 3 m ceiling by 5°F using this method?
(b) Is this a spontaneous or nonspontaneous process?
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 10 Solutions
Chemistry for Engineering Students
Ch. 10 - Prob. 1COCh. 10 - . explain the concept of entropy in your own...Ch. 10 - Prob. 3COCh. 10 - . state the second law of thermodynamics in words...Ch. 10 - Prob. 5COCh. 10 - Prob. 6COCh. 10 - Prob. 7COCh. 10 - Prob. 8COCh. 10 - Prob. 9COCh. 10 - Prob. 10CO
Ch. 10 - Prob. 10.1PAECh. 10 - Prob. 10.2PAECh. 10 - Prob. 10.3PAECh. 10 - Prob. 10.4PAECh. 10 - Prob. 10.5PAECh. 10 - Use the web to learn how many pounds of plastics...Ch. 10 - On the basis of your experience, predict which of...Ch. 10 - In the thermodynamic definition of a spontaneous...Ch. 10 - 1f the combustion of butane is spontaneous, how...Ch. 10 - Identify each of the processes listed as...Ch. 10 - Identify each of the processes listed as...Ch. 10 - Athletic trainers use instant ice packs that can...Ch. 10 - Are any of the following exothermic processes not...Ch. 10 - Enthalpy changes often help predict whether or not...Ch. 10 - When a fossil fuel burns, is that fossil fuel the...Ch. 10 - Murphy's law is a whimsical rule that says that...Ch. 10 - Prob. 10.17PAECh. 10 - Prob. 10.18PAECh. 10 - Prob. 10.19PAECh. 10 - Some games include dice with more than six sides....Ch. 10 - How does probability relate to spontaneity?Ch. 10 - Prob. 10.22PAECh. 10 - For each pair of items, tell which has the higher...Ch. 10 - Prob. 10.24PAECh. 10 - Prob. 10.25PAECh. 10 - For each process, tell whether the entropy change...Ch. 10 - Without doing a calculation, predict whether the...Ch. 10 - For the following chemical reactions, predict the...Ch. 10 - Prob. 10.29PAECh. 10 - Prob. 10.30PAECh. 10 - Prob. 10.31PAECh. 10 - Prob. 10.32PAECh. 10 - According to Lambert, leaves lying in the yard and...Ch. 10 - Prob. 10.34PAECh. 10 - What happens to the entropy of the universe during...Ch. 10 - Prob. 10.36PAECh. 10 - One statement of the second law of thermodynamics...Ch. 10 - Prob. 10.38PAECh. 10 - How does the second law of thermodynamics explain...Ch. 10 - Prob. 10.40PAECh. 10 - Prob. 10.41PAECh. 10 - Which reaction occurs with the greater increase in...Ch. 10 - Which reaction occurs with the greater increase in...Ch. 10 - Methanol is burned as fuel in some race cars. This...Ch. 10 - Limestone is predominantly CaCO3, which can...Ch. 10 - Suppose that you find out that a system has an...Ch. 10 - Use tabulated thermodynamic data to calculate the...Ch. 10 - Prob. 10.48PAECh. 10 - Calculate S for the dissolution of magnesium...Ch. 10 - Calculate the standard entropy change for the...Ch. 10 - Through photosynthesis, plants build molecules of...Ch. 10 - Find websites describing two different attempts to...Ch. 10 - Prob. 10.53PAECh. 10 - Prob. 10.54PAECh. 10 - A beaker of water at 400 C(on the left in the...Ch. 10 - Describe why it is easier to use Gto determine the...Ch. 10 - Under what conditions does G allow us to predict...Ch. 10 - There is another free energy state function, the...Ch. 10 - 10.45 Calculate G at 45°C for reactions for which...Ch. 10 - 10.46 Discuss the effect of temperature change on...Ch. 10 - The reaction CO2(g)+H2(g)CO(g)+H2O(g) is not...Ch. 10 - Prob. 10.62PAECh. 10 - Prob. 10.63PAECh. 10 - For the reaction NO(g)+NO2(g)N2O3(g) , use...Ch. 10 - 10.51 The combustion of acetylene was used in...Ch. 10 - Natural gas (methane) is being used in...Ch. 10 - Silicon forms a series of compounds analogous to...Ch. 10 - Explain why Gf of O2 (g) is zero.Ch. 10 - Using tabulated thermodynamic data, calculate G...Ch. 10 - Using tabulated thermodynamic data, calculate G...Ch. 10 - Calculate G for the dissolution of both sodium...Ch. 10 - Phosphorus exists in multiple solid phases,...Ch. 10 - 10.59 The normal melting point of benzene, C6H6,...Ch. 10 - Prob. 10.74PAECh. 10 - Estimate the temperature range over which each of...Ch. 10 - Recall that incomplete combustion of fossil fuels...Ch. 10 - During polymerization, the system usually becomes...Ch. 10 - Prob. 10.78PAECh. 10 - Prob. 10.79PAECh. 10 - The recycling of polymers represents only one...Ch. 10 - Diethyl ether is a liquid at normal temperature...Ch. 10 - Calculate the entropy change, S , for the...Ch. 10 - Gallium metal has a melting point of 29.8°C. Use...Ch. 10 - Methane can be produced from CO and H2.The process...Ch. 10 - 10.85 Iodine is not very soluble in water, but it...Ch. 10 - The enthalpy of vaporization for water is 40.65 kJ...Ch. 10 - Determine whether each of the following statements...Ch. 10 - Nickel metal reacts with carbon monoxide to form...Ch. 10 - Polyethylene has a heat capacity of 2,3027 J g-1...Ch. 10 - A key component in many chemical engineering...Ch. 10 - The reaction shown below is involved in the...Ch. 10 - Using only the data given below, determine G for...Ch. 10 - The graph below shows G as a function of...Ch. 10 - Prob. 10.94PAECh. 10 - Prob. 10.95PAECh. 10 - Prob. 10.96PAECh. 10 - Prob. 10.97PAECh. 10 - Prob. 10.98PAECh. 10 - Thermodynamics provides a way to interpret...Ch. 10 - Prob. 10.100PAECh. 10 - 10.101 Fluorine reacts with liquid water to form...Ch. 10 - 10.102 Ammonia can react with oxygen gas to form...Ch. 10 - Prob. 10.103PAECh. 10 - 10.104 (a) When a chemical bond forms, what...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The formation of aluminum oxide from its elements is highly exothermic. If 2.70 g Al metal is burned in pure O2 to give A12O3, calculate how much thermal energy is evolved in the process (at constant pressure).arrow_forwardYou did an experiment in which you found that 59.8 J was required to raise the temperature of 25.0 g of ethylene glycol (a compound used as antifreeze in automobile engines) by 1.00 K. Calculate the specific heat capacity of ethylene glycol from these data.arrow_forwardAn industrial process for manufacturing sulfuric acid, H2SO4, uses hydrogen sulfide, H2S, from the purification of natural gas. In the first step of this process, the hydrogen sulfide is burned to obtain sulfur dioxide, SO2. 2H2S(g)+3O2(g)2H2O(l)+2SO2(g);H=1124kJ The density of sulfur dioxide at 25C and 1.00 atm is 2.62 g/L, and the molar heat capacity is 30.2 J/(mol C). (a) How much heat would be evolved in producing 1.00 L of SO2 at 25C and 1.00 atm? (b) Suppose heat from this reaction is used to heat 1.00 L of the SO2 from 25C to 500C for its use in the next step of the process. What percentage of the heat evolved is required for this?arrow_forward
- A piece of lead of mass 121.6 g was heated by an electrical coil. From the resistance of the coil, the current, and the Time the current flowed, it was calculated that 235 J of heat was added to the lead. The temperature of the lead rose from 20.4C to 35.5C. What is the specific heat of the lead?arrow_forwardNitrogen gas (2.75 L) is confined in a cylinder under constant atmospheric pressure (1.01 105 pascals). The volume of gas decreases to 2.10 L when 485 J of energy is transferred as heat to the surroundings. What is the change in internal energy of the gas?arrow_forwardWhen one mol of KOH is neutralized by sulfuric acid, q=56 kJ. (This is called the heat of neutralization.) At 23.7C, 25.0 mL of 0.475 M H2SO4 is neutralized by 0.613 M KOH in a coffee-cup calorimeter. Assume that the specific heat of all solutions is 4.18J/gC, that the density of all solutions is 1.00 g/mL, and that volumes are additive. (a) How many mL of KOH is required to neutralize H2SO4? (b) What is the final temperature of the solution?arrow_forward
- Would the amount of heat absorbed by the dissolution in Example 5.6 appear greater, lesser, or remain the same if the heat capacity of the calorimeter were taken into account? Explain your answer.arrow_forwardThe standard enthalpies of formation of KNO3(s) and K2S(s) are 494.6 kJ/mol and 376.6 kJ/mol, respectively. a. Determine the standard enthalpy change for the reaction of black powder according to the balanced equation on the previous page. b. Determine the enthalpy change that occurs when 1.00 g of black powder decomposes according to the stoichiometry of the balanced equation above. (Even though black powder is a mixture, assume that we can designate 1 mol of black powder as consisting of exactly 2 mol of KNO3, 3 mol of C, and 1 mol of S.)arrow_forwardGasohol, a mixture of gasoline and ethanol, C2H5OH, is used as automobile fuel. The alcohol releases energy in a combustion reaction with O2. C2H5OH(l)+3O2(g)2CO2(g)+3H2O(l) If 0.115 g ethanol evolves 3.62 kJ when burned at constant pressure, calculate the combustion enthalpy for ethanol.arrow_forward
- What are the two ways that a final chemical state of a system can be more probable than its initial state?arrow_forwardIn a coffee-cup calorimeter, 150.0 mL of 0.50 M HCI is added to 50.0 mL of 1.00 M NaOH to make 200.0 g solution at an initial temperature of 48.2C. If the enthalpy of neutralization for the reaction between a strong acid and a strong base is 56 kJ/mol, calculate the final temperature of the calorimeter contents. Assume the specific heat capacity of the solution is 4.184 J/g C and assume no heat Joss to the surroundings.arrow_forwardA 21.3-mL sample of 0.977 M NaOH is mixed with 29.5 mL of 0.918 M HCl in a coffee-cup calorimeter (see Section 6.6 of your text for a description of a coffee-cup calorimeter). The enthalpy of the reaction, written with the lowest whole-number coefficients, is 55.8 kJ. Both solutions are at 19.6C prior to mixing and reacting. What is the final temperature of the reaction mixture? When solving this problem, assume that no heat is lost from the calorimeter to the surroundings, the density of all solutions is 1.00 g/mL, the specific heat of all solutions is the same as that of water, and volumes are additive.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY