Estimate the temperature range over which each of the following reactions is spontaneous.
(a)
(b)
(c)
(d)
Interpretation:
The temperature range over which the reaction
Concept introduction:
A process which happens without any outward intervention is recognized as the spontaneous process. As per the 2nd law of thermodynamics, that states the universe’s entropy rises for any spontaneous process.
A process which happens when pressure and temperature both are constant, the determination of spontaneity can be done using Gibbs free energy:
Here, a sign of
Answer to Problem 10.75PAE
Solution:
The reaction will be spontaneous for temperature higher than 647 K.
Explanation of Solution
In the given reaction due to the presence of more number of moles of gas in the product, the change in entropy is estimated as positive, and due to the presence of more number of bonds in the product compared to the reactant, the enthalpy is also positive because in products bonds are formed more than the reactants.
First, calculate the change in enthalpy by subtracting all of the product enthalpies from the reactant enthalpies:
In next step, find the change in entropy after subtracting all the product entropies from the reactant entropies:
In the final step, using Gibbs free energy form the first section to find the temperature of spontaneity. Spontaneous reactions occur when the change in Gibb’s free energy is less than zero which means that energy is released from the system.
To find out the range of the temperature which can cause the negative change in
This temperature is the cutoff for temperatures for spontaneity. All temperatures higher than this temperature will result in spontaneous reaction because of the larger contribution from entropy which has a positive sign. Therefore, the reaction will be spontaneous for temperature higher than
Interpretation:
The temperature range over which the reaction
Concept introduction:
A process which happens without any outward intervention is recognized as the spontaneous process. As per the 2nd law of thermodynamics, that states the universe’s entropy rises for any spontaneous process.
A process which happens when pressure and temperature both are constant, the determination of spontaneity can be done using Gibbs free energy:
Here, a sign of
Answer to Problem 10.75PAE
Solution:
There are no temperatures that this reaction will be spontaneous.
Explanation of Solution
The first change in enthalpy will be calculated after subtracting product enthalpies from the reactant enthalpies.
In next step find the entropy change by subtracting product entropies from the reactant entropies.
In the final step using the expression for Gibb’s free energy from the first section to find the temperature of spontaneity. Spontaneous reactions occur when the change in Gibb’s free energy is less than zero, meaning that energy is released from the system
The reaction will be never being spontaneous because all temperatures are positive, meaning that
Interpretation:
The temperature range over which the reaction
Concept introduction:
A process which happens without any outward intervention is recognized as the spontaneous process. As per the 2nd law of thermodynamics, that states the universe’s entropy rises for any spontaneous process.
A process which happens when pressure and temperature both are constant, the determination of spontaneity can be done using Gibbs free energy:
Here, a sign of
Answer to Problem 10.75PAE
Solution:
The temperature must be greater than 201.20 K for the reaction to be spontaneous
Explanation of Solution
This reaction is the opposite of a formation reaction because a compound is split into its elemental states. The following equation is the balanced overall reaction:
According, the change in entropy for the formation of phosphine can be found in a table of common values:
Next, calculate the change in entropy by subtracting all the product entropies from the reactant entropies:
Plugging the values for the reactants and products as found in the table of common thermodynamic values. Multiply each product or reactant through its coefficient listed in the overall balanced reaction.
Then the standard Gibbs free energy of reaction is: -
For the reaction to be spontaneous,
So, the temperature must be greater than 201.20 K for the reaction to be spontaneous.
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry for Engineering Students
- The table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which is the most brittle and which is the most tough (or most resistant). Breaking strength Elastic modulus Material Yield strength Tensile strength Breaking strain A (MPa) 415 (MPa) (MPa) (GPa) 550 0.15 500 310 B 700 850 0.15 720 300 C Non-effluence fracture 650 350arrow_forwardPlease correct answer and don't used hand raitingarrow_forwardMaterials. The following terms are synonyms: tension, effort and stress.arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which material will be the most ductile and which the most brittle. Material Yield strength Tensile strength Breaking strain Breaking strength Elastic modulus (MPa) (MPa) (MPa) (GPa) A 310 340 0.23 265 210 B 100 120 0.40 105 150 с 415 550 0.15 500 310 D 700 850 0.14 720 210 E - Non-effluence fracture 650 350arrow_forward
- Please correct answer and don't used hand raiting and don't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardConsider the following Figure 2 and two atoms that are initially an infinite distance apart, x =00, at which point the potential energy of the system is U = 0. If they are brought together to x = x, the potential energy is related to the total force P by dU dx = P Given this, qualitatively sketch the variation of U with x. What happens at x=x? What is the significance of x = x, in terms of the potential energy? 0 P, Force 19 Attraction Total Repulsion x, Distance Figure 2. Variation with distance of the attractive, repulsive, and total forces between atoms. The slope dP/dx at the equilibrium spacing xe is proportional to the elastic modulus E; the stress σb, corresponding to the peak in total force, is the theoretical cohesive strength.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning