The reaction shown below is involved in the refining of iron. (The table that follows provides all of the
(a) Find
(b)
(c) Calculate
(d) At what temperatures would this reaction be spontaneous?
Compound |
|
S° (kJ mol-1) |
|
Fe2O3(s) | -824.2 | ? | -742.2 |
C(s, graphite) | 0 | 5.740 | 0 |
Fe(s) | 0 | 27.3 | 0 |
CO2(g) | -393.5 | 213.6 | -394.4.83 |
Interpretation: ΔSo for the given reaction is 557.98 J/K. Find ΔSo for Fe2O3(s).
Concept Introduction:
where m and n stands for the moles of products and reactants respectively
Answer to Problem 10.91PAE
Solution: ΔSo for Fe2O3(s) = 87.4 JK-1
Explanation of Solution
ΔSo for reaction =557.98 JK-1, ΔSo for C(s) = 5.740 JK-1, ΔSo for Fe(s) = 27.3 JK-1, ΔSo for CO2(g) = 213.6 JK-1
Interpretation: ΔGo for the given reaction at the standard temperature of 298K
Concept Introduction:
where m and n stands for the moles of products and reactants respectively
Answer to Problem 10.91PAE
Solution: [G] for the given reaction is 301.2 kJ mol-1
Explanation of Solution
ΔGfo for Fe2O3 = -742.2 kJ mol-1, ΔGf° for C(s)= 0, ΔGf° for Fe(s) = 0, ΔGf° for CO2(g) = -394.4 kJ mol-1
Interpretation: the temperature at which this reaction be spontaneous
Concept Introduction: For the reaction to be spontaneous ΔG must be negative. Using the Gibbs free energy equation, ΔG = ΔH − TΔS, we can find the temperature at which this reaction be spontaneous.
Answer to Problem 10.91PAE
Solution: The temperature at which this reaction will be spontaneous is 5353.5K
Explanation of Solution
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry for Engineering Students
- A 25.0 g sample of water was cooled from 23.9°C to 12.7°C, how much heat was released? (Assume thatthe specific heat of water is 4.18 J/g °C)arrow_forwardZeolites: environmental applications.arrow_forward" is The structure of the bicarbonate (hydrogen carbonate) ion, HCO3-, HCO3 best described as a hybrid of several contributing resonance forms, two of which are shown here. HO :0: :Ö: HO + Bicarbonate is crucial for the control of body pH (for example, blood pH: 7.4). A more self-indulgent use is in baking soda, where it serves as a source of CO2 CO₂ 2 gas, which gives bread and pastry their fluffy constituency. (i) Draw at least one additional resonance form. = (ii) Using curved "electron-pushing" arrows, show how these Lewis structures may be interconverted by movement of electron pairs. (iii) Determine which form or forms will be the major contributor(s) to the real structure of bicarbonate, explaining your answer on the basis of the criteria in Section 1-5.arrow_forward
- Which of these is the best use of a volumetric flask? measuring how much liquid it contains delivering a precise amount of liquid to another container holding solutions making solutions of precise concentrationarrow_forwardYou're competing on a Great British television game show, and you need to bake a cake. The quantity for each ingredient is given in grams, but you haven't been given a kitchen scale. Which of these properties would correlate with the mass of a baking ingredient like eggs or milk? Check all that apply. depth of color viscosity volume densityarrow_forwardDraw a Lewis structure for each of the following species. Again, assign charges where appropriate. a. H-H¯ b. CH3-CH3 c. CH3+CH3 d. CH3 CH3 e. CH3NH3+CH3NH3 f. CH30-CH3O¯ g. CH2CH2 - h. HC2-(HCC) HC2 (HCC) i. H202×(HOOH) H₂O₂ (HOOH) Nortonarrow_forward
- Is molecule 6 an enantiomer?arrow_forwardShow work. Don't give Ai generated solutionarrow_forwardCheck the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 Molecule 3 ----||| Molecule 4 Molecule 5 Molecule 6 none of the above mm..arrow_forward
- Show work. don't give Ai generated solutionarrow_forwardCheck the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 Molecule 3 ----||| Molecule 4 Molecule 5 Molecule 6 none of the above mm..arrow_forwardUse the vapor-liquid equilibrium data at 1.0 atm. for methanol-water (Table 2-8 ) for the following: If the methanol vapor mole fraction is 0.600, what is the methanol liquid mole fraction? Is there an azeotrope in the methanol-water system at a pressure of 1.0 atmospheres? If water liquid mole fraction is 0.350, what is the water vapor mole fraction? What are the K values of methanol and of water at a methanol mole fraction in the liquid of 0.200? What is the relative volatility αM-W at a methanol mole fraction in the liquid of 0.200?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning