Chemistry for Engineering Students
3rd Edition
ISBN: 9781285199023
Author: Lawrence S. Brown, Tom Holme
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 5CO
Interpretation Introduction
Interpretation :
The third law of
Concept Introduction :
Entropy is defined as randomness in the system. If temperature of the system increases, its randomness also increases. Thus, entropy is directly proportional to the temperature. The value can expect to be minimum at 0K. Thus, aa perfect crystalline structure can have a minimum entropy value. This is known as third law of thermodynamics.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Chemistry for Engineering Students
Ch. 10 - Prob. 1COCh. 10 - . explain the concept of entropy in your own...Ch. 10 - Prob. 3COCh. 10 - . state the second law of thermodynamics in words...Ch. 10 - Prob. 5COCh. 10 - Prob. 6COCh. 10 - Prob. 7COCh. 10 - Prob. 8COCh. 10 - Prob. 9COCh. 10 - Prob. 10CO
Ch. 10 - Prob. 10.1PAECh. 10 - Prob. 10.2PAECh. 10 - Prob. 10.3PAECh. 10 - Prob. 10.4PAECh. 10 - Prob. 10.5PAECh. 10 - Use the web to learn how many pounds of plastics...Ch. 10 - On the basis of your experience, predict which of...Ch. 10 - In the thermodynamic definition of a spontaneous...Ch. 10 - 1f the combustion of butane is spontaneous, how...Ch. 10 - Identify each of the processes listed as...Ch. 10 - Identify each of the processes listed as...Ch. 10 - Athletic trainers use instant ice packs that can...Ch. 10 - Are any of the following exothermic processes not...Ch. 10 - Enthalpy changes often help predict whether or not...Ch. 10 - When a fossil fuel burns, is that fossil fuel the...Ch. 10 - Murphy's law is a whimsical rule that says that...Ch. 10 - Prob. 10.17PAECh. 10 - Prob. 10.18PAECh. 10 - Prob. 10.19PAECh. 10 - Some games include dice with more than six sides....Ch. 10 - How does probability relate to spontaneity?Ch. 10 - Prob. 10.22PAECh. 10 - For each pair of items, tell which has the higher...Ch. 10 - Prob. 10.24PAECh. 10 - Prob. 10.25PAECh. 10 - For each process, tell whether the entropy change...Ch. 10 - Without doing a calculation, predict whether the...Ch. 10 - For the following chemical reactions, predict the...Ch. 10 - Prob. 10.29PAECh. 10 - Prob. 10.30PAECh. 10 - Prob. 10.31PAECh. 10 - Prob. 10.32PAECh. 10 - According to Lambert, leaves lying in the yard and...Ch. 10 - Prob. 10.34PAECh. 10 - What happens to the entropy of the universe during...Ch. 10 - Prob. 10.36PAECh. 10 - One statement of the second law of thermodynamics...Ch. 10 - Prob. 10.38PAECh. 10 - How does the second law of thermodynamics explain...Ch. 10 - Prob. 10.40PAECh. 10 - Prob. 10.41PAECh. 10 - Which reaction occurs with the greater increase in...Ch. 10 - Which reaction occurs with the greater increase in...Ch. 10 - Methanol is burned as fuel in some race cars. This...Ch. 10 - Limestone is predominantly CaCO3, which can...Ch. 10 - Suppose that you find out that a system has an...Ch. 10 - Use tabulated thermodynamic data to calculate the...Ch. 10 - Prob. 10.48PAECh. 10 - Calculate S for the dissolution of magnesium...Ch. 10 - Calculate the standard entropy change for the...Ch. 10 - Through photosynthesis, plants build molecules of...Ch. 10 - Find websites describing two different attempts to...Ch. 10 - Prob. 10.53PAECh. 10 - Prob. 10.54PAECh. 10 - A beaker of water at 400 C(on the left in the...Ch. 10 - Describe why it is easier to use Gto determine the...Ch. 10 - Under what conditions does G allow us to predict...Ch. 10 - There is another free energy state function, the...Ch. 10 - 10.45 Calculate G at 45°C for reactions for which...Ch. 10 - 10.46 Discuss the effect of temperature change on...Ch. 10 - The reaction CO2(g)+H2(g)CO(g)+H2O(g) is not...Ch. 10 - Prob. 10.62PAECh. 10 - Prob. 10.63PAECh. 10 - For the reaction NO(g)+NO2(g)N2O3(g) , use...Ch. 10 - 10.51 The combustion of acetylene was used in...Ch. 10 - Natural gas (methane) is being used in...Ch. 10 - Silicon forms a series of compounds analogous to...Ch. 10 - Explain why Gf of O2 (g) is zero.Ch. 10 - Using tabulated thermodynamic data, calculate G...Ch. 10 - Using tabulated thermodynamic data, calculate G...Ch. 10 - Calculate G for the dissolution of both sodium...Ch. 10 - Phosphorus exists in multiple solid phases,...Ch. 10 - 10.59 The normal melting point of benzene, C6H6,...Ch. 10 - Prob. 10.74PAECh. 10 - Estimate the temperature range over which each of...Ch. 10 - Recall that incomplete combustion of fossil fuels...Ch. 10 - During polymerization, the system usually becomes...Ch. 10 - Prob. 10.78PAECh. 10 - Prob. 10.79PAECh. 10 - The recycling of polymers represents only one...Ch. 10 - Diethyl ether is a liquid at normal temperature...Ch. 10 - Calculate the entropy change, S , for the...Ch. 10 - Gallium metal has a melting point of 29.8°C. Use...Ch. 10 - Methane can be produced from CO and H2.The process...Ch. 10 - 10.85 Iodine is not very soluble in water, but it...Ch. 10 - The enthalpy of vaporization for water is 40.65 kJ...Ch. 10 - Determine whether each of the following statements...Ch. 10 - Nickel metal reacts with carbon monoxide to form...Ch. 10 - Polyethylene has a heat capacity of 2,3027 J g-1...Ch. 10 - A key component in many chemical engineering...Ch. 10 - The reaction shown below is involved in the...Ch. 10 - Using only the data given below, determine G for...Ch. 10 - The graph below shows G as a function of...Ch. 10 - Prob. 10.94PAECh. 10 - Prob. 10.95PAECh. 10 - Prob. 10.96PAECh. 10 - Prob. 10.97PAECh. 10 - Prob. 10.98PAECh. 10 - Thermodynamics provides a way to interpret...Ch. 10 - Prob. 10.100PAECh. 10 - 10.101 Fluorine reacts with liquid water to form...Ch. 10 - 10.102 Ammonia can react with oxygen gas to form...Ch. 10 - Prob. 10.103PAECh. 10 - 10.104 (a) When a chemical bond forms, what...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The statement Energycan beneithercreatednor destroyedis sometimes used as an equivalent statement of the first law of thermodynamics. There areinaccuracies to the statement, however. Restate it tomake it less inaccurate.arrow_forward9.20 State the first law of thermodynamics briefly in your own words.arrow_forwardThe first law of thermodynamics is sometimes stated You cant win and the second law is stated similarly as You cant even break even. Explain how these two statements can be considered apt though incomplete viewpoints for the first and second laws of thermodynamics.arrow_forward
- 9.42 Why is enthalpy generally more useful than internal energy in the thermodynamics of real world systems?arrow_forwardWhat are the two ways that a final chemical state of a system can be more probable than its initial state?arrow_forward9.11 Analyze the units of the quantity (pressurevolume) and show that they are energy units, consistent with the idea of PV-work.arrow_forward
- Explain why the statement No process is 100 efficient is not the best statement of the second law of thermodynamics.arrow_forwardDefine the term entropy, and give an example of a sample of matter that has zero entropy. What are the units of entropy? How do they differ from the units of enthalpy?arrow_forwardWould the amount of heat absorbed by the dissolution in Example 5.6 appear greater, lesser, or remain the same if the heat capacity of the calorimeter were taken into account? Explain your answer.arrow_forward
- 9.23 Which system does not work: (a) E=436J , q=400J ; or E=317J , q=347J ?arrow_forwardOne statement of the second law of thermodynamics is that heat cannot be turned completely into work. Another is that the entropy of the universe always increases. How are these two statements related?arrow_forwardCoal is used as a fuel in some electric-generating plants. Coal is a complex material, but for simplicity we may consider it to be a form of carbon. The energy that can be derived from a fuel is sometimes compared with the enthalpy of the combustion reaction: C(s)+O2(g)CO2(g) Calculate the standard enthalpy change for this reaction at 25C. Actually, only a fraction of the heat from this reaction is available to produce electric energy. In electric generating plants, this reaction is used to generate heat for a steam engine, which turns the generator. Basically the steam engine is a type of heat engine in which steam enters the engine at high temperature (Th), work is done, and the steam then exits at a lower temperature (Tl). The maximum fraction, f, of heat available to produce useful energy depends on the difference between these temperatures (expressed in kelvins), f = (Th Tl)/Th. What is the maximum heat energy available for useful work from the combustion of 1.00 mol of C(s) to CO2(g)? (Assume the value of H calculated at 25C for the heat obtained in the generator.) It is possible to consider more efficient ways to obtain useful energy from a fuel. For example, methane can be burned in a fuel cell to generate electricity directly. The maximum useful energy obtained in these cases is the maximum work, which equals the free-energy change. Calculate the standard free-energy change for the combustion of 1.00 mol of C(s) to CO2(g). Compare this value with the maximum obtained with the heat engine described here.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
- World of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College DivChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
World of Chemistry
Chemistry
ISBN:9780618562763
Author:Steven S. Zumdahl
Publisher:Houghton Mifflin College Div
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY