
Concept explainers
(a)
Interpretation:
The name is correctly paired or not with the halogenated alkane chemical formula has to be indicated.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
Similar to the alkyl groups, the halogen is also treated as substituents present on the carbon chain. They are called as fluoro-, chloro-, bromo-, and iodo-.
If the carbon chain contains both alkyl and halogen, they both are considered of equal ranks. The numbering is done in a way so that the substituents get the least number, whether it is an alkyl or a halo group.
In IUPAC names, the groups that are present on the carbon chain are written in alphabetical order.
Common names:
Halogenated alkanes are also named as
Halogenation:
Halogenation is a
Halogenation reaction of alkane is an example of substitution reaction. This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.
On chlorination of methane, four products can be obtained. Each product are obtained by replacing hydrogen atoms one by one. The chemical formula along with nomenclature is given as,
(a)

Answer to Problem 1.145EP
The given name is not paired correctly with the alkane chemical formula.
Explanation of Solution
The alkane chemical formula given is
On chlorination of methane, four products can be obtained. Each product are obtained by replacing hydrogen atoms one by one. The chemical formula along with nomenclature is given as,
From the above information, the correct name for
Name of the halogenated alkane is not paired correctly with the alkane chemical formula.
(b)
Interpretation:
The name is correctly paired or not with the halogenated alkane chemical formula has to be indicated.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
IUPAC nomenclature for halogenated alkanes/cycloalkanes:
Similar to the alkyl groups, the halogen is also treated as substituents present on the carbon chain. They are called as fluoro-, chloro-, bromo-, and iodo-.
If the carbon chain contains both alkyl and halogen, they both are considered of equal ranks. The numbering is done in a way so that the substituents get the least number, whether it is an alkyl or a halo group.
In IUPAC names, the groups that are present on the carbon chain are written in alphabetical order.
Common names:
Halogenated alkanes are also named as alkyl halides. These are not IUPAC names. They are common names. In a common name, two parts are present. First part is the name of the hydrocarbon (alkyl group). Second part gives the halogen present in the compound. The halogen is considered as though it is present as an ion even though no ions are present.
Halogenation:
Halogenation is a chemical reaction between a substance and halogen. The product of halogenation reaction is that one or more halogens are incorporated into molecules of the substance. Halogenation of hydrocarbon gives hydrocarbon derivatives as product where halogen atoms are substituted instead of hydrogen atoms.
Halogenation reaction of alkane is an example of substitution reaction. This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.
On chlorination of methane, four products can be obtained. Each product are obtained by replacing hydrogen atoms one by one. The chemical formula along with nomenclature is given as,
(b)

Answer to Problem 1.145EP
The given name is not paired correctly with the alkane chemical formula.
Explanation of Solution
The alkane chemical formula given is
On chlorination of methane, four products can be obtained. Each product are obtained by replacing hydrogen atoms one by one. The chemical formula along with nomenclature is given as,
From the above information, the correct name for
Name of the halogenated alkane is not paired correctly with the alkane chemical formula.
(c)
Interpretation:
The name is correctly paired or not with the halogenated alkane chemical formula has to be indicated.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
IUPAC nomenclature for halogenated alkanes/cycloalkanes:
Similar to the alkyl groups, the halogen is also treated as substituents present on the carbon chain. They are called as fluoro-, chloro-, bromo-, and iodo-.
If the carbon chain contains both alkyl and halogen, they both are considered of equal ranks. The numbering is done in a way so that the substituents get the least number, whether it is an alkyl or a halo group.
In IUPAC names, the groups that are present on the carbon chain are written in alphabetical order.
Common names:
Halogenated alkanes are also named as alkyl halides. These are not IUPAC names. They are common names. In a common name, two parts are present. First part is the name of the hydrocarbon (alkyl group). Second part gives the halogen present in the compound. The halogen is considered as though it is present as an ion even though no ions are present.
Halogenation:
Halogenation is a chemical reaction between a substance and halogen. The product of halogenation reaction is that one or more halogens are incorporated into molecules of the substance. Halogenation of hydrocarbon gives hydrocarbon derivatives as product where halogen atoms are substituted instead of hydrogen atoms.
Halogenation reaction of alkane is an example of substitution reaction. This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.
On chlorination of methane, four products can be obtained. Each product are obtained by replacing hydrogen atoms one by one. The chemical formula along with nomenclature is given as,
(c)

Answer to Problem 1.145EP
The given name is not paired correctly with the alkane chemical formula.
Explanation of Solution
The alkane chemical formula given is
On chlorination of methane, four products can be obtained. Each product are obtained by replacing hydrogen atoms one by one. The chemical formula along with nomenclature is given as,
From the above information, the correct name for
Name of the halogenated alkane is not paired correctly with the alkane chemical formula.
(d)
Interpretation:
The name is correctly paired or not with the halogenated alkane chemical formula has to be indicated.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
IUPAC nomenclature for halogenated alkanes/cycloalkanes:
Similar to the alkyl groups, the halogen is also treated as substituents present on the carbon chain. They are called as fluoro-, chloro-, bromo-, and iodo-.
If the carbon chain contains both alkyl and halogen, they both are considered of equal ranks. The numbering is done in a way so that the substituents get the least number, whether it is an alkyl or a halo group.
In IUPAC names, the groups that are present on the carbon chain are written in alphabetical order.
Common names:
Halogenated alkanes are also named as alkyl halides. These are not IUPAC names. They are common names. In a common name, two parts are present. First part is the name of the hydrocarbon (alkyl group). Second part gives the halogen present in the compound. The halogen is considered as though it is present as an ion even though no ions are present.
Halogenation:
Halogenation is a chemical reaction between a substance and halogen. The product of halogenation reaction is that one or more halogens are incorporated into molecules of the substance. Halogenation of hydrocarbon gives hydrocarbon derivatives as product where halogen atoms are substituted instead of hydrogen atoms.
Halogenation reaction of alkane is an example of substitution reaction. This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.
On chlorination of methane, four products can be obtained. Each product are obtained by replacing hydrogen atoms one by one. The chemical formula along with nomenclature is given as,
(d)

Answer to Problem 1.145EP
The given name is paired correctly with the alkane chemical formula.
Explanation of Solution
The alkane chemical formula given is
On chlorination of methane, four products can be obtained. Each product are obtained by replacing hydrogen atoms one by one. The chemical formula along with nomenclature is given as,
From the above information, the correct name for
Name of the halogenated alkane is paired correctly with the alkane chemical formula.
Want to see more full solutions like this?
Chapter 1 Solutions
Organic And Biological Chemistry
- What are the retrosynthesis and forward synthesis of these reactions?arrow_forwardWhich of the given reactions would form meso product? H₂O, H2SO4 III m CH3 CH₂ONa CH3OH || H₂O, H2SO4 CH3 1. LiAlH4, THF 2. H₂O CH3 IVarrow_forwardWhat is the major product of the following reaction? O IV III HCI D = III ა IVarrow_forward
- The reaction of what nucleophile and substrate is represented by the following transition state? CH3 CH3O -Br อ δ CH3 Methanol with 2-bromopropane Methanol with 1-bromopropane Methoxide with 1-bromopropane Methoxide with 2-bromopropanearrow_forwardWhat is the stepwise mechanism for this reaction?arrow_forward32. Consider a two-state system in which the low energy level is 300 J mol 1 and the higher energy level is 800 J mol 1, and the temperature is 300 K. Find the population of each level. Hint: Pay attention to your units. A. What is the partition function for this system? B. What are the populations of each level? Now instead, consider a system with energy levels of 0 J mol C. Now what is the partition function? D. And what are the populations of the two levels? E. Finally, repeat the second calculation at 500 K. and 500 J mol 1 at 300 K. F. What do you notice about the populations as you increase the temperature? At what temperature would you expect the states to have equal populations?arrow_forward
- 30. We will derive the forms of the molecular partition functions for atoms and molecules shortly in class, but the partition function that describes the translational and rotational motion of a homonuclear diatomic molecule is given by Itrans (V,T) = = 2πmkBT h² V grot (T) 4π²IKBT h² Where h is Planck's constant and I is molecular moment of inertia. The overall partition function is qmolec Qtrans qrot. Find the energy, enthalpy, entropy, and Helmholtz free energy for the translational and rotational modes of 1 mole of oxygen molecules and 1 mole of iodine molecules at 50 K and at 300 K and with a volume of 1 m³. Here is some useful data: Moment of inertia: I2 I 7.46 x 10- 45 kg m² 2 O2 I 1.91 x 101 -46 kg m²arrow_forwardK for each reaction step. Be sure to account for all bond-breaking and bond-making steps. HI HaC Drawing Arrows! H3C OCH3 H 4 59°F Mostly sunny H CH3 HO O CH3 'C' CH3 Select to Add Arrows CH3 1 L H&C. OCH3 H H H H Select to Add Arrows Q Search Problem 30 of 20 H. H3C + :0: H CH3 CH3 20 H2C Undo Reset Done DELLarrow_forwardDraw the principal organic product of the following reaction.arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Using the provided structures, draw the curved arrows that epict the mechanistic steps for the proton transfer between a hydronium ion and a pi bond. Draw any missing organic structures in the empty boxes. Be sure to account for all lone-pairs and charges as well as bond-breaking and bond-making steps. 2 56°F Mostly cloudy F1 Drawing Arrows > Q Search F2 F3 F4 ▷11 H. H : CI: H + Undo Reset Done DELLarrow_forwardCalculate the chemical shifts in 13C and 1H NMR for 4-chloropropiophenone ? Write structure and label hydrogens and carbons. Draw out the benzene ring structure when doing itarrow_forward1) Calculate the longest and shortest wavelengths in the Lyman and Paschen series. 2) Calculate the ionization energy of He* and L2+ ions in their ground states. 3) Calculate the kinetic energy of the electron emitted upon irradiation of a H-atom in ground state by a 50-nm radiation.arrow_forward
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- World of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College DivChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co



