
Concept explainers
(a)
Interpretation:
Structural formula for the given halogenated hydrocarbon has to be drawn.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
Similar to the alkyl groups, the halogen is also treated as substituents present on the carbon chain. They are called as fluoro-, chloro-, bromo-, and iodo-.
If the carbon chain contains both alkyl and halogen, they both are considered of equal ranks. The numbering is done in a way so that the substituents get the least number, whether it is an alkyl or a halo group.
In IUPAC names, the groups that are present on the carbon chain are written in alphabetical order.
Common names:
Halogenated alkanes are also named as
Structural formula for halogenated hydrocabons:
From the IUPAC name or common name that is given for the halogenated hydrocarbon, the structural formula can be drawn. The parent hydrocarbon is present in the end when considering IUPAC name and in common name, the parent hydrocarbon is present in the first part as an alkyl group.
(b)
Interpretation:
Structural formula for the given halogenated hydrocarbon has to be drawn.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
IUPAC nomenclature for halogenated alkanes/cycloalkanes:
Similar to the alkyl groups, the halogen is also treated as substituents present on the carbon chain. They are called as fluoro-, chloro-, bromo-, and iodo-.
If the carbon chain contains both alkyl and halogen, they both are considered of equal ranks. The numbering is done in a way so that the substituents get the least number, whether it is an alkyl or a halo group.
In IUPAC names, the groups that are present on the carbon chain are written in alphabetical order.
Common names:
Halogenated alkanes are also named as alkyl halides. These are not IUPAC names. They are common names. In a common name, two parts are present. First part is the name of the hydrocarbon (alkyl group). Second part gives the halogen present in the compound. The halogen is considered as though it is present as an ion even though no ions are present.
Structural formula for halogenated hydrocabons:
From the IUPAC name or common name that is given for the halogenated hydrocarbon, the structural formula can be drawn. The parent hydrocarbon is present in the end when considering IUPAC name and in common name, the parent hydrocarbon is present in the first part as an alkyl group.
(c)
Interpretation:
Structural formula for the given halogenated hydrocarbon has to be drawn.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
IUPAC nomenclature for halogenated alkanes/cycloalkanes:
Similar to the alkyl groups, the halogen is also treated as substituents present on the carbon chain. They are called as fluoro-, chloro-, bromo-, and iodo-.
If the carbon chain contains both alkyl and halogen, they both are considered of equal ranks. The numbering is done in a way so that the substituents get the least number, whether it is an alkyl or a halo group.
In IUPAC names, the groups that are present on the carbon chain are written in alphabetical order.
Common names:
Halogenated alkanes are also named as alkyl halides. These are not IUPAC names. They are common names. In a common name, two parts are present. First part is the name of the hydrocarbon (alkyl group). Second part gives the halogen present in the compound. The halogen is considered as though it is present as an ion even though no ions are present.
Structural formula for halogenated hydrocabons:
From the IUPAC name or common name that is given for the halogenated hydrocarbon, the structural formula can be drawn. The parent hydrocarbon is present in the end when considering IUPAC name and in common name, the parent hydrocarbon is present in the first part as an alkyl group.
(d)
Interpretation:
Structural formula for the given halogenated hydrocarbon has to be drawn.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
IUPAC nomenclature for halogenated alkanes/cycloalkanes:
Similar to the alkyl groups, the halogen is also treated as substituents present on the carbon chain. They are called as fluoro-, chloro-, bromo-, and iodo-.
If the carbon chain contains both alkyl and halogen, they both are considered of equal ranks. The numbering is done in a way so that the substituents get the least number, whether it is an alkyl or a halo group.
In IUPAC names, the groups that are present on the carbon chain are written in alphabetical order.
Common names:
Halogenated alkanes are also named as alkyl halides. These are not IUPAC names. They are common names. In a common name, two parts are present. First part is the name of the hydrocarbon (alkyl group). Second part gives the halogen present in the compound. The halogen is considered as though it is present as an ion even though no ions are present.
Structural formula for halogenated hydrocabons:
From the IUPAC name or common name that is given for the halogenated hydrocarbon, the structural formula can be drawn. The parent hydrocarbon is present in the end when considering IUPAC name and in common name, the parent hydrocarbon is present in the first part as an alkyl group.

Trending nowThis is a popular solution!

Chapter 1 Solutions
Organic And Biological Chemistry
- Predict the major products of the following organic reaction: NC Δ ? Some important Notes: • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to draw bonds carefully to show important geometric relationships between substituents. Note: if your answer contains a complicated ring structure, you must use one of the molecular fragment stamps (available in the menu at right) to enter the ring structure. You can add any substituents using the pencil tool in the usual way. Click and drag to start drawing a structure. Х аarrow_forwardPredict the major products of this organic reaction. Be sure you use dash and wedge bonds to show stereochemistry where it's important. + ☑ OH 1. TsCl, py .... 文 P 2. t-BuO K Click and drag to start drawing a structure.arrow_forwardConsider this organic reaction: ( Draw the major products of the reaction in the drawing area below. If there won't be any major products, because this reaction won't happen at a significant rate, check the box under the drawing area instead. Click and drag to start drawing a structure. Х : а ค 1arrow_forward
- In the drawing area below, draw the major products of this organic reaction: If there are no major products, because nothing much will happen to the reactant under these reaction conditions, check the box under the drawing area instead. 1. NaH 2. CH3Br ? Click and drag to start drawing a structure. No reaction. : ☐ Narrow_forward+ Predict the major product of the following reaction. : ☐ + ☑ ค OH H₂SO4 Click and drag to start drawing a structure.arrow_forwardConsider this organic reaction: ... OH CI Draw the major products of the reaction in the drawing area below. If there won't be any major products, because this reaction won't happen at a significant rate, check the box under the drawing area instead. ☐ No Reaction. Click and drag to start drawing a structure. : аarrow_forward
- Consider the following reactants: Br Would elimination take place at a significant rate between these reactants? Note for advanced students: by significant, we mean that the rate of elimination would be greater than the rate of competing substitution reactions. yes O no If you said elimination would take place, draw the major products in the upper drawing area. If you said elimination would take place, also draw the complete mechanism for one of the major products in the lower drawing area. If there is more than one major product, you may draw the mechanism that leads to any of them. Major Products:arrow_forwardDraw one product of an elimination reaction between the molecules below. Note: There may be several correct answers. You only need to draw one of them. You do not need to draw any of the side products of the reaction. OH + ! : ☐ + Х Click and drag to start drawing a structure.arrow_forwardFind one pertinent analytical procedure for each of following questions relating to food safety analysis. Question 1: The presence of lead, mercury and cadmium in canned tuna Question 2: Correct use of food labellingarrow_forward
- Formulate TWO key questions that are are specifically in relation to food safety. In addition to this, convert these questions into a requirement for chemical analysis.arrow_forwardWhat are the retrosynthesis and forward synthesis of these reactions?arrow_forwardWhich of the given reactions would form meso product? H₂O, H2SO4 III m CH3 CH₂ONa CH3OH || H₂O, H2SO4 CH3 1. LiAlH4, THF 2. H₂O CH3 IVarrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning




