
Concept explainers
(a)
Interpretation:
The member of the given pair which is expected to have high boiling point has to be identified.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
Physical properties of halogenated
Boiling point of halogenated hydrocarbon is usually higher than the corresponding hydrocarbon. This is because, there is a polarity difference between carbon and halogen atom. This result in increased dipole‑dipole interactions.
General trend considering the boiling point and melting point of halogenated hydrocarbon are,
- Melting and boiling points increase with the increase in size of alkyl groups that is present. Due to the increasing intermolecular forces, the melting and boiling point increases.
- As the size of halogen atom increases, the melting point and boiling point also increases.
Halogenated hydrocarbons do not possess hydrogen bonding capability. Therefore, solubility of halogenated hydrocarbon is limited.
(b)
Interpretation:
The member of the given pair which is expected to have high boiling point has to be identified.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
Physical properties of halogenated alkanes:
Boiling point of halogenated hydrocarbon is usually higher than the corresponding hydrocarbon. This is because, there is a polarity difference between carbon and halogen atom. This result in increased dipole‑dipole interactions.
General trend considering the boiling point and melting point of halogenated hydrocarbon are,
- Melting and boiling points increase with the increase in size of alkyl groups that is present. Due to the increasing intermolecular forces, the melting and boiling point increases.
- As the size of halogen atom increases, the melting point and boiling point also increases.
Halogenated hydrocarbons do not possess hydrogen bonding capability. Therefore, solubility of halogenated hydrocarbon is limited.
(c)
Interpretation:
The member of the given pair which is expected to have high boiling point has to be identified.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
Physical properties of halogenated alkanes:
Boiling point of halogenated hydrocarbon is usually higher than the corresponding hydrocarbon. This is because, there is a polarity difference between carbon and halogen atom. This result in increased dipole‑dipole interactions.
General trend considering the boiling point and melting point of halogenated hydrocarbon are,
- Melting and boiling points increase with the increase in size of alkyl groups that is present. Due to the increasing intermolecular forces, the melting and boiling point increases.
- As the size of halogen atom increases, the melting point and boiling point also increases.
Halogenated hydrocarbons do not possess hydrogen bonding capability. Therefore, solubility of halogenated hydrocarbon is limited.
(d)
Interpretation:
The member of the given pair which is expected to have high boiling point has to be identified.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
Physical properties of halogenated alkanes:
Boiling point of halogenated hydrocarbon is usually higher than the corresponding hydrocarbon. This is because, there is a polarity difference between carbon and halogen atom. This result in increased dipole‑dipole interactions.
General trend considering the boiling point and melting point of halogenated hydrocarbon are,
- Melting and boiling points increase with the increase in size of alkyl groups that is present. Due to the increasing intermolecular forces, the melting and boiling point increases.
- As the size of halogen atom increases, the melting point and boiling point also increases.
Halogenated hydrocarbons do not possess hydrogen bonding capability. Therefore, solubility of halogenated hydrocarbon is limited.

Want to see the full answer?
Check out a sample textbook solution
Chapter 1 Solutions
Organic And Biological Chemistry
- I have a 2 mil plastic film that degrades after 22 days at 88C and at 61C takes 153 days. What is the failure at 47C in days.arrow_forwardIf a 5 film plastic film degraded in 30 days at 35C and the same film degraded in 10 days at 55 C and 2 days at 65C what would the predicted life time be at 22C for the same film?arrow_forwardno Ai walkthroughsarrow_forward
- I have a aqueous solution (175 ml) of iridium trichloride containing 8,750 ppm Iridium by ICP OES analysis. What is the percent concentration of Iridium trichloride in aquous solution and provide the concentration in moles per liter, percentage by weight.arrow_forwardno Ai walkthroughsarrow_forwardno Ai walkthroughsarrow_forward
- no Ai walkthroughs (product in picture is wrong btw don't submit the same thing)arrow_forwardno Ai walkthroughsarrow_forward136 PRACTICAL SPECTROSCOPY Compound 78 is a high-boiling liquid (boiling point 189° C) that contains halogen, but will not react with alkoxides to yield an halogen. ether. The Mass, IR, and 'H NMR spectra, along with 13C NMR data, are given below. Elemental Analysis: C, 35.32; H, 2.47; contains BC Spectral Data: doublet, 137.4 ppm; doublet, 130.1 ppm; doublet, 127.4 ppm; singlet, 97.3 ppm Absorbance Mass Spectrum Intensity 77 77 204 M + 128 40 60 80 100 120 140 160 180 m/e 200 220 280 240 260 300 Infrared Spectrum Wave Number, cm -1 4000 3000 2500 2000 1500 1300 1200 1100 1000 900 800 700 3 6 7 8 9 10 12 13 15 Wavelength, microns 'H NMR wwwww 5 Structure: www ppm, & ©2000 Brooks/Cole Publishing Com-arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning




